复合材料
材料科学
陶瓷基复合材料
陶瓷
基质(化学分析)
氧化物
晶粒生长
粒度
机械强度
冶金
作者
Renato S.M. Almeida,Marcelo B. R. Rech,Jéssica Condi Mainardi,Kamen Tushtev,Kurosch Rezwan
摘要
Abstract Oxide ceramic matrix composites (Ox‐CMCs) are composed of porous matrices reinforced by dense fibers to achieve high damage tolerance. It is generally assumed that their mechanical properties are fiber dominant. However, fiber strength can also be influenced by the surrounding matrix as it can affect fiber grain growth. Fiber–matrix interactions are studied in this work regarding fiber microstructural evolution and composite strength. Minicomposites containing Nextel 610 fibers and different matrix compositions (alumina, alumina–zirconia, and mullite–alumina) are evaluated after sintering and after additional heat treatment at 1200°C for 100 h. Fiber grain growth during sintering is faster in alumina matrix and slower in mullite–alumina matrix. Scanning transmission electron microscope–energy‐dispersive X‐ray spectroscopy (STEM–EDX) measurements show that Si diffuses between fiber and matrix grain boundaries. This outward or inward diffusion of SiO 2 leads to the respectively different grain growth kinetics. Grain growth inhibition in alumina–zirconia matrix is only observed after the longer heat treatment, suggesting that ZrO 2 diffusion is slower than SiO 2 . The resultant composite strength depends not only on fiber properties, but also on matrix densification. Minicomposite with alumina–zirconia matrix showed higher strength, while mullite–alumina composites showed higher thermal stability. In summary, the properties of Ox‐CMCs can be tailored by adjusting the matrix composition with the used fibers.
科研通智能强力驱动
Strongly Powered by AbleSci AI