系统发育树
挤压
系统发育学
进化生物学
系统发育关系
生物
古生物学
遗传学
材料科学
基因
冶金
作者
Xiaoqian Li,Huan‐Wen Peng,Kun‐Li Xiang,Xiaoguo Xiang,Florian Jabbour,Rosa del C. Ortiz,Pamela S. Soltis,Douglas E. Soltis,Wei Wang
标识
DOI:10.1073/pnas.2322527121
摘要
The southeastward extrusion of Indochina along the Ailao Shan-Red River shear zone (ARSZ) is one of two of the most prominent consequences of the India-Asia collision. This plate-scale extrusion has greatly changed Southeast Asian topography and drainage patterns and effected regional climate and biotic evolution. However, little is known about how Indochina was extruded toward the southeast over time. Here, we sampled 42 plant and animal clades (together encompassing 1,721 species) that are distributed across the ARSZ and are not expected to disperse across long distances. We first assess the possible role of climate on driving the phylogenetic separations observed across the ARSZ. We then investigate the temporal dynamics of the extrusion of Indochina through a multitaxon analysis. We show that the lineage divergences across the ARSZ were most likely associated with the Indochinese extrusion rather than climatic events. The lineage divergences began at ~53 Ma and increased sharply ~35 Ma, with two peaks at ~19 Ma and ~7 Ma, and one valley at ~13 Ma. Our results suggest a two-phase model for the extrusion of Indochina, and in each phase, the extrusion was subject to periods of acceleration and decrease, in agreement with the changes of the India-Asia convergence rate and angle from the early Eocene to the late Miocene. This study highlights that a multitaxon analysis can illuminate the timing of subtle historical events that may be difficult for geological data to pinpoint and can be used to explore other tectonic events.
科研通智能强力驱动
Strongly Powered by AbleSci AI