李普希茨连续性
共轭梯度法
行搜索
水准点(测量)
非线性系统
期限(时间)
趋同(经济学)
非线性共轭梯度法
数学
单调多边形
算法
梯度下降
下降方向
数学优化
应用数学
计算机科学
数学分析
几何学
人工智能
物理
计算机安全
大地测量学
量子力学
经济增长
经济
人工神经网络
半径
地理
作者
Dandan Li,Yong Li,Songhua Wang
出处
期刊:Mathematics
[MDPI AG]
日期:2024-08-19
卷期号:12 (16): 2556-2556
摘要
This paper proposes an improved three-term conjugate gradient algorithm designed to solve nonlinear equations with convex constraints. The key features of the proposed algorithm are as follows: (i) It only requires that nonlinear equations have continuous and monotone properties; (ii) The designed search direction inherently ensures sufficient descent and trust-region properties, eliminating the need for line search formulas; (iii) Global convergence is established without the necessity of the Lipschitz continuity condition. Benchmark problem numerical results illustrate the proposed algorithm’s effectiveness and competitiveness relative to other three-term algorithms. Additionally, the algorithm is extended to effectively address the image denoising problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI