已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prospective on applying machine learning in computational fluid dynamics (CFD) simulation of metallurgical reactors

计算流体力学 计算机科学 流体力学 机械工程 工程类 机械 航空航天工程 物理
作者
Yuhong Liu,Jiangshan Zhang,Shufeng Yang,Jingshe Li,Qing Liu
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241278460
摘要

Metallurgical reactors, especially in ironmaking/steelmaking process, characterise with high-temperature turbulence, multiphase flow, mass/heat transfer and reactions. Computational fluid dynamics (CFD) simulation-based design and optimisation are of significance for efficient metallurgical performance. However, the difficulty and cost to numerically solve the nonlinear controlling equations combined with data pre/post-processing make the whole CFD simulation process time-consuming, which makes it challenging to provide in-time feedback for industrial practices. The popularisation and prosperous development of machine learning bring new opportunities for promoting CFD performance. Discussion has been made on the current research progress of applying machine learning in the whole CFD workflow including pre-processing, solving, and post-processing. Among them, the time consumed by manual pre-processing exceeds 50% of CFD tasks in general. The machine learning or parametric modelling methods can reduce pre-processing time by three orders in the estimate. The solving step is expected to be accelerated by 5 to 1000 times using machine learning. A brief review of machine learning coupled CFD is provided, as is a prospective on its development. Discussion is presented on the main functions, challenges, typical techniques and future directions of applying machine learning in CFD simulation of metallurgical reactors, for the purpose of making CFD faster, more accurate, and better visualised based on the metallurgical practices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荔枝多酚发布了新的文献求助10
3秒前
hyaoooo完成签到 ,获得积分10
6秒前
9秒前
单身的钧完成签到,获得积分10
15秒前
17秒前
9752249完成签到,获得积分10
17秒前
科研小白狗完成签到 ,获得积分10
17秒前
prosperp应助丁爽采纳,获得10
20秒前
胖鲤鱼完成签到,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
杳鸢应助科研通管家采纳,获得30
26秒前
26秒前
丁爽完成签到,获得积分10
28秒前
123完成签到 ,获得积分20
29秒前
Mark_He发布了新的文献求助20
30秒前
31秒前
31秒前
杳鸢应助123采纳,获得30
35秒前
35秒前
专注凌文发布了新的文献求助10
36秒前
36秒前
星辰大海应助zcg采纳,获得10
37秒前
39秒前
Yannis发布了新的文献求助10
41秒前
scarlet完成签到 ,获得积分10
42秒前
寒冷的金鱼完成签到,获得积分10
42秒前
肃清夏安完成签到,获得积分10
43秒前
机灵一兰完成签到 ,获得积分10
45秒前
Crisp发布了新的文献求助10
45秒前
krajicek发布了新的文献求助30
46秒前
标致的安莲关注了科研通微信公众号
47秒前
XCHI完成签到 ,获得积分10
48秒前
49秒前
无辜的白秋完成签到 ,获得积分10
51秒前
思源应助鹏程万里采纳,获得10
54秒前
ADDDD发布了新的文献求助10
55秒前
666完成签到 ,获得积分10
58秒前
Rwslpy完成签到 ,获得积分10
58秒前
开放素完成签到 ,获得积分10
59秒前
NexusExplorer应助Mark_He采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499960
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382