DiffRecon: Diffusion-based CT reconstruction with cross-modal deformable fusion for DR-guided non-coplanar radiotherapy

情态动词 融合 放射治疗 计算机科学 核医学 人工智能 医学 放射科 材料科学 哲学 语言学 高分子化学
作者
Jiawei Sun,Nannan Cao,Hui Bi,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Xinye Ni
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108868-108868
标识
DOI:10.1016/j.compbiomed.2024.108868
摘要

In non-coplanar radiotherapy, DR is commonly used for image guiding which needs to fuse intraoperative DR with preoperative CT. But this fusion task performs poorly, suffering from unaligned and dimensional differences between DR and CT. CT reconstruction estimated from DR could facilitate this challenge. Thus, We propose a unified generation and registration framework, named DiffRecon, for intraoperative CT reconstruction based on DR using the diffusion model. Specifically, we use the generation model for synthesizing intraoperative CTs to eliminate dimensional differences and the registration model for aligning synthetic CTs to improve reconstruction. To ensure clinical usability, CT is not only estimated from DR but the preoperative CT is also introduced as prior. We design a dual-encoder to learn prior knowledge and spatial deformation among pre- and intra-operative CT pairs and DR parallelly for 2D/3D feature deformable conversion. To calibrate the cross-modal fusion, we insert cross-attention modules to enhance the 2D/3D feature interaction between dual encoders. DiffRecon has been evaluated by both image quality metrics and dosimetric indicators. The high image synthesis metrics are with RMSE of 0.02±0.01, PSNR of 44.92±3.26, and SSIM of 0.994±0.003. The mean gamma passing rates between rCT and sCT for 1%/1 mm, 2%/2 mm and 3%/3 mm acceptance criteria are 95.2%, 99.4% and 99.9% respectively. The proposed DiffRecon can reconstruct CT accurately from a single DR projection with excellent image generation quality and dosimetric accuracy. These demonstrate that the method can be applied in non-coplanar adaptive radiotherapy workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小超完成签到 ,获得积分10
1秒前
缪尹盛完成签到,获得积分10
1秒前
2秒前
马香芦完成签到,获得积分10
2秒前
蜡笔小可完成签到,获得积分10
3秒前
研友_VZG7GZ应助哈哈哈哈采纳,获得10
3秒前
4秒前
yy发布了新的文献求助10
4秒前
2y完成签到,获得积分10
4秒前
索兰黛尔完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
zhouleiwang发布了新的文献求助10
5秒前
5秒前
sougardenist发布了新的文献求助10
6秒前
6秒前
小蘑菇应助lilycat采纳,获得10
6秒前
满意代亦完成签到 ,获得积分10
6秒前
兴奋小丸子完成签到,获得积分10
6秒前
zuoyou完成签到,获得积分10
6秒前
fixit完成签到,获得积分10
7秒前
7秒前
zzzzz完成签到,获得积分10
7秒前
朝天完成签到,获得积分10
7秒前
8秒前
zzx完成签到,获得积分10
8秒前
CodeCraft应助2y采纳,获得10
9秒前
lushuai发布了新的文献求助10
9秒前
9秒前
aurora完成签到 ,获得积分10
9秒前
天天快乐应助辉辉采纳,获得10
9秒前
a1245105069完成签到,获得积分10
10秒前
10秒前
heavenhorse完成签到,获得积分10
10秒前
小库里2025完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
七月完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661277
求助须知:如何正确求助?哪些是违规求助? 3222314
关于积分的说明 9744806
捐赠科研通 2931943
什么是DOI,文献DOI怎么找? 1605318
邀请新用户注册赠送积分活动 757835
科研通“疑难数据库(出版商)”最低求助积分说明 734569