DiffRecon: Diffusion-based CT reconstruction with cross-modal deformable fusion for DR-guided non-coplanar radiotherapy

情态动词 融合 放射治疗 计算机科学 核医学 人工智能 医学 放射科 材料科学 哲学 语言学 高分子化学
作者
Jiawei Sun,Nannan Cao,Hui Bi,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Xinye Ni
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108868-108868
标识
DOI:10.1016/j.compbiomed.2024.108868
摘要

In non-coplanar radiotherapy, DR is commonly used for image guiding which needs to fuse intraoperative DR with preoperative CT. But this fusion task performs poorly, suffering from unaligned and dimensional differences between DR and CT. CT reconstruction estimated from DR could facilitate this challenge. Thus, We propose a unified generation and registration framework, named DiffRecon, for intraoperative CT reconstruction based on DR using the diffusion model. Specifically, we use the generation model for synthesizing intraoperative CTs to eliminate dimensional differences and the registration model for aligning synthetic CTs to improve reconstruction. To ensure clinical usability, CT is not only estimated from DR but the preoperative CT is also introduced as prior. We design a dual-encoder to learn prior knowledge and spatial deformation among pre- and intra-operative CT pairs and DR parallelly for 2D/3D feature deformable conversion. To calibrate the cross-modal fusion, we insert cross-attention modules to enhance the 2D/3D feature interaction between dual encoders. DiffRecon has been evaluated by both image quality metrics and dosimetric indicators. The high image synthesis metrics are with RMSE of 0.02±0.01, PSNR of 44.92±3.26, and SSIM of 0.994±0.003. The mean gamma passing rates between rCT and sCT for 1%/1 mm, 2%/2 mm and 3%/3 mm acceptance criteria are 95.2%, 99.4% and 99.9% respectively. The proposed DiffRecon can reconstruct CT accurately from a single DR projection with excellent image generation quality and dosimetric accuracy. These demonstrate that the method can be applied in non-coplanar adaptive radiotherapy workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜜儿完成签到,获得积分10
刚刚
光亮映之完成签到,获得积分10
刚刚
1秒前
任婷发布了新的文献求助10
1秒前
友好的匪完成签到,获得积分10
1秒前
吱吱草莓派完成签到 ,获得积分10
1秒前
西早07发布了新的文献求助10
2秒前
slim完成签到,获得积分10
2秒前
2秒前
慕青应助小莫采纳,获得10
2秒前
月亮代表我的心完成签到,获得积分10
2秒前
研友_Raven完成签到,获得积分10
2秒前
1988完成签到,获得积分20
2秒前
weixiaosi完成签到 ,获得积分10
4秒前
zz完成签到,获得积分10
5秒前
justin完成签到,获得积分10
5秒前
6秒前
乐观寻绿完成签到,获得积分10
6秒前
㎏w发布了新的文献求助10
6秒前
6秒前
shijiaoshou完成签到,获得积分10
6秒前
wanci应助淡然问儿采纳,获得10
7秒前
王金娥完成签到,获得积分10
7秒前
酷波er应助小夫同学采纳,获得10
7秒前
7秒前
YIFGU完成签到 ,获得积分10
7秒前
9秒前
agnway完成签到,获得积分10
9秒前
彭于晏应助WRECKIE采纳,获得10
9秒前
易止完成签到 ,获得积分10
9秒前
在水一方应助呆萌背包采纳,获得10
9秒前
9秒前
10秒前
大力超大力完成签到 ,获得积分10
10秒前
qy完成签到,获得积分20
11秒前
烟花应助Ran采纳,获得10
11秒前
科研通AI2S应助TN采纳,获得30
12秒前
端庄的以寒完成签到,获得积分10
12秒前
amo完成签到,获得积分10
12秒前
panyi发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099