Electron Bridge Effect Induced by Oxygen‐Bridged Ga on PdMo Bimetallene Nanoribbons for Boosting Electrocatalytic Alkynol Semihydrogenation

材料科学 吸附 催化作用 氧气 纳米技术 电子 密度泛函理论 化学物理 化学工程 计算化学 物理化学 有机化学 物理 化学 量子力学 工程类
作者
Wenxin Wang,Ruidong Yang,Qiqi Mao,Mu Xu,Hongjie Yu,Kai Deng,Jianguo Wang,Liang Wang,Hongjing Wang
出处
期刊:Advanced Functional Materials [Wiley]
被引量:1
标识
DOI:10.1002/adfm.202410614
摘要

Abstract The utilization of green hydrogen sources in H 2 O for alkynols electrocatalytic semihydrogenation reaction (ESHR) at ambient temperature provides a promising pathway toward the sustainable conversion of alkynols. However, it is still a great challenge to construct specific interfacial structure to adjust the electronic structure of Pd for the purpose of altering the strong adsorption of Pd with active hydrogen to enhance the production of alkenols. Here, the atomically dispersed GaO x ‐PdMo bimetallene nanoribbons (GaO x ‐PdMo BNRs) via oxygen bridging Ga atoms is designed to the surface of PdMo BNRs for 2‐methyl‐3‐butyn‐2‐ol (MBY) ESHR to the synthesis of 2‐methyl‐3‐buten‐2‐ol (MBE). The GaO x ‐PdMo BNRs achieve the excellent MBE selectivity (≈97.4%), Faraday efficiency (≈96.1%), and maintain long‐term stability. Density functional theory demonstrates that the top electron‐enriched Ga atoms and the bottom electron‐deficient Pd atoms construct a “pyramidal” interface via the oxygen bridge. The unique surface can effectively activate H 2 O and weaken interaction between catalyst and MBE, thus promoting MBE generation. Moreover, the electron bridge effect between Ga‐O‐PdMo can induce p‐d orbital hybridization to achieve lower the d ‐band center of surface Pd thus modulating the reactants adsorption. This work provides a strategy to improve ESHR performance by electron bridge effect to modulate interfacial electron distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艺玲发布了新的文献求助10
刚刚
咚咚咚完成签到,获得积分10
刚刚
芋圆Z.完成签到,获得积分10
刚刚
atad2发布了新的文献求助10
刚刚
li梨完成签到,获得积分10
刚刚
1秒前
晏小敏完成签到,获得积分10
1秒前
爆米花应助风中寄云采纳,获得10
2秒前
屹舟发布了新的文献求助10
2秒前
Dou完成签到,获得积分10
2秒前
白泯完成签到,获得积分10
3秒前
1ssd发布了新的文献求助10
3秒前
667发布了新的文献求助10
3秒前
小二郎应助辰柒采纳,获得10
4秒前
5秒前
5秒前
clear完成签到,获得积分20
5秒前
5秒前
orixero应助congguitar采纳,获得10
5秒前
Evan完成签到,获得积分10
5秒前
YANG发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
6秒前
sunzhiyu233发布了新的文献求助10
7秒前
Raul完成签到 ,获得积分10
7秒前
7秒前
伯尔尼圆白菜完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
buuyoo完成签到,获得积分10
8秒前
科研通AI5应助魏煜佳采纳,获得10
8秒前
LLxiaolong完成签到,获得积分10
8秒前
9秒前
9秒前
巨噬细胞A完成签到,获得积分10
9秒前
9秒前
我要读博士完成签到 ,获得积分10
9秒前
xxq完成签到,获得积分20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759