Hyperspectral Target Detection Based on Prior Spectral Perception and Local Graph Fusion

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 计算机视觉 理论计算机科学
作者
Xiaobin Zhao,Jun Huang,Yunquan Gao,Qingwang Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13936-13948 被引量:4
标识
DOI:10.1109/jstars.2024.3439560
摘要

With the development of hyperspectral sensing technology, hyperspectral target detection technology plays an important role in remote target detection. However, existing hyperspectral target detection models are poorly adapted to complex backgrounds and mainly focus on the spectral domain, making less use of spatial structure information leading to low target detection rates. Therefore, a new target detection algorithm based on the prior spectral perception and local graph fusion (SPLGF) is proposed. Firstly, the prior spectrum-guided target extraction method is established. This method can take full advantage of the background and target spectral information by local inner and outer window linkage, reduce the impact of spectral variability on target acquisition performance, and improve detection stability. Secondly, the target enhancement strategy based on the Gabor multi-feature graph is proposed. This technique makes full use of multi-directional and multi-scale spatial information, which can reduce the influence of brightness, contrast and amplitude variation on detection performance due to light and angle. Finally, spatial-spectral fusion is executed to achieve target detection. It can make full use of spectral and spatial structure information to improve the target detection effect. Publicly available datasets and real collected datasets are adopted to check the validity of the proposed method. After comparison, it is found that the proposed algorithm has better detection effect than existing baseline methods. The maximum improvement in AUC values are 16.56%-88.16% across the eight datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要的人完成签到,获得积分20
刚刚
1秒前
GQ完成签到 ,获得积分20
1秒前
火星上的穆完成签到,获得积分10
2秒前
传奇3应助冷傲火龙果采纳,获得10
2秒前
贾茗宇完成签到,获得积分10
2秒前
bian发布了新的文献求助10
3秒前
3秒前
Picopy完成签到,获得积分10
3秒前
科研通AI5应助jerryang采纳,获得10
3秒前
华仔应助生动十八采纳,获得10
4秒前
4秒前
小杭76应助简单如容采纳,获得10
4秒前
5秒前
liangzai发布了新的文献求助10
5秒前
5秒前
Akim应助珍珍采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
FashionBoy应助任性醉山采纳,获得10
6秒前
6秒前
134345发布了新的文献求助10
7秒前
科研通AI5应助山水之乐采纳,获得10
7秒前
LPH发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
8秒前
9秒前
xx发布了新的文献求助10
9秒前
cherish发布了新的文献求助10
12秒前
13秒前
久久丫完成签到 ,获得积分10
13秒前
13秒前
14秒前
外外完成签到,获得积分10
14秒前
14秒前
die发布了新的文献求助10
14秒前
15秒前
15秒前
ccalvintan发布了新的文献求助10
16秒前
孤独大娘发布了新的文献求助10
16秒前
111发布了新的文献求助10
16秒前
贾茗宇发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934228
求助须知:如何正确求助?哪些是违规求助? 4202186
关于积分的说明 13056265
捐赠科研通 3976412
什么是DOI,文献DOI怎么找? 2178969
邀请新用户注册赠送积分活动 1195288
关于科研通互助平台的介绍 1106655