Hyperspectral Target Detection Based on Prior Spectral Perception and Local Graph Fusion

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 计算机视觉 理论计算机科学
作者
Xiaobin Zhao,Jun Huang,Yunquan Gao,Qingwang Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13936-13948 被引量:4
标识
DOI:10.1109/jstars.2024.3439560
摘要

With the development of hyperspectral sensing technology, hyperspectral target detection technology plays an important role in remote target detection. However, existing hyperspectral target detection models are poorly adapted to complex backgrounds and mainly focus on the spectral domain, making less use of spatial structure information leading to low target detection rates. Therefore, a new target detection algorithm based on the prior spectral perception and local graph fusion (SPLGF) is proposed. Firstly, the prior spectrum-guided target extraction method is established. This method can take full advantage of the background and target spectral information by local inner and outer window linkage, reduce the impact of spectral variability on target acquisition performance, and improve detection stability. Secondly, the target enhancement strategy based on the Gabor multi-feature graph is proposed. This technique makes full use of multi-directional and multi-scale spatial information, which can reduce the influence of brightness, contrast and amplitude variation on detection performance due to light and angle. Finally, spatial-spectral fusion is executed to achieve target detection. It can make full use of spectral and spatial structure information to improve the target detection effect. Publicly available datasets and real collected datasets are adopted to check the validity of the proposed method. After comparison, it is found that the proposed algorithm has better detection effect than existing baseline methods. The maximum improvement in AUC values are 16.56%-88.16% across the eight datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的长颈鹿完成签到,获得积分10
刚刚
体贴雪碧发布了新的文献求助10
刚刚
一只猪完成签到,获得积分10
刚刚
1秒前
111完成签到,获得积分20
1秒前
Ava应助WB采纳,获得10
3秒前
4秒前
4秒前
魔幻诗兰完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
stellc完成签到,获得积分10
5秒前
5秒前
祝你开心发布了新的文献求助10
6秒前
追寻宛海完成签到,获得积分10
7秒前
KKK发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
迷人静白完成签到,获得积分10
9秒前
9秒前
10秒前
wangye发布了新的文献求助10
10秒前
wanci应助zyyyyyyyy采纳,获得10
10秒前
10秒前
追寻宛海发布了新的文献求助15
11秒前
11秒前
复杂惜霜发布了新的文献求助10
11秒前
Jasper应助激昂的逊采纳,获得10
11秒前
黎先生发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
wanci应助务实的西牛采纳,获得10
13秒前
彭于晏应助ww采纳,获得10
13秒前
浮游应助勇yi采纳,获得10
13秒前
13秒前
怀玉发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901