清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hyperspectral Target Detection Based on Prior Spectral Perception and Local Graph Fusion

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 计算机视觉 理论计算机科学
作者
Xiaobin Zhao,Jun Huang,Yunquan Gao,Qingwang Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13936-13948 被引量:3
标识
DOI:10.1109/jstars.2024.3439560
摘要

With the development of hyperspectral sensing technology, hyperspectral target detection technology plays an important role in remote target detection. However, existing hyperspectral target detection models are poorly adapted to complex backgrounds and mainly focus on the spectral domain, making less use of spatial structure information leading to low target detection rates. Therefore, a new target detection algorithm based on the prior spectral perception and local graph fusion (SPLGF) is proposed. Firstly, the prior spectrum-guided target extraction method is established. This method can take full advantage of the background and target spectral information by local inner and outer window linkage, reduce the impact of spectral variability on target acquisition performance, and improve detection stability. Secondly, the target enhancement strategy based on the Gabor multi-feature graph is proposed. This technique makes full use of multi-directional and multi-scale spatial information, which can reduce the influence of brightness, contrast and amplitude variation on detection performance due to light and angle. Finally, spatial-spectral fusion is executed to achieve target detection. It can make full use of spectral and spatial structure information to improve the target detection effect. Publicly available datasets and real collected datasets are adopted to check the validity of the proposed method. After comparison, it is found that the proposed algorithm has better detection effect than existing baseline methods. The maximum improvement in AUC values are 16.56%-88.16% across the eight datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐浠完成签到 ,获得积分10
10秒前
葛力完成签到,获得积分20
14秒前
科研通AI2S应助葛力采纳,获得10
26秒前
27秒前
宇文非笑完成签到 ,获得积分0
35秒前
科研通AI5应助laodai8855采纳,获得20
36秒前
38秒前
乾坤侠客LW完成签到,获得积分10
1分钟前
1分钟前
lixuebin完成签到 ,获得积分10
2分钟前
科研通AI2S应助葛力采纳,获得10
2分钟前
lxh完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
laodai8855发布了新的文献求助20
2分钟前
2分钟前
3分钟前
科研通AI5应助梨子茶采纳,获得30
3分钟前
3分钟前
bju发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
bju完成签到,获得积分10
3分钟前
4分钟前
梨子茶发布了新的文献求助30
4分钟前
mczhu完成签到,获得积分10
4分钟前
聪慧芷巧完成签到 ,获得积分10
4分钟前
qqJing完成签到,获得积分10
4分钟前
deallyxyz应助草木采纳,获得10
4分钟前
4分钟前
4分钟前
常有李完成签到,获得积分10
5分钟前
5分钟前
默默孱完成签到 ,获得积分10
5分钟前
JamesPei应助汎影采纳,获得10
5分钟前
5分钟前
Lucas应助汎影采纳,获得10
5分钟前
wwe完成签到,获得积分10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513318
关于积分的说明 11167279
捐赠科研通 3248691
什么是DOI,文献DOI怎么找? 1794414
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804652