亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral Target Detection Based on Prior Spectral Perception and Local Graph Fusion

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 计算机视觉 理论计算机科学
作者
Xiaobin Zhao,Jun Huang,Yunquan Gao,Qingwang Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13936-13948 被引量:4
标识
DOI:10.1109/jstars.2024.3439560
摘要

With the development of hyperspectral sensing technology, hyperspectral target detection technology plays an important role in remote target detection. However, existing hyperspectral target detection models are poorly adapted to complex backgrounds and mainly focus on the spectral domain, making less use of spatial structure information leading to low target detection rates. Therefore, a new target detection algorithm based on the prior spectral perception and local graph fusion (SPLGF) is proposed. Firstly, the prior spectrum-guided target extraction method is established. This method can take full advantage of the background and target spectral information by local inner and outer window linkage, reduce the impact of spectral variability on target acquisition performance, and improve detection stability. Secondly, the target enhancement strategy based on the Gabor multi-feature graph is proposed. This technique makes full use of multi-directional and multi-scale spatial information, which can reduce the influence of brightness, contrast and amplitude variation on detection performance due to light and angle. Finally, spatial-spectral fusion is executed to achieve target detection. It can make full use of spectral and spatial structure information to improve the target detection effect. Publicly available datasets and real collected datasets are adopted to check the validity of the proposed method. After comparison, it is found that the proposed algorithm has better detection effect than existing baseline methods. The maximum improvement in AUC values are 16.56%-88.16% across the eight datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
null应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
3927456843完成签到,获得积分10
5秒前
南南发布了新的文献求助10
5秒前
Luke发布了新的文献求助10
6秒前
翊烦发布了新的文献求助10
7秒前
11秒前
胖Q完成签到 ,获得积分20
12秒前
DRXXX发布了新的文献求助10
15秒前
17秒前
18秒前
YAYING完成签到 ,获得积分10
19秒前
科研通AI6应助Luke采纳,获得10
21秒前
23秒前
23秒前
23秒前
Hcc完成签到 ,获得积分10
36秒前
凯圣王发布了新的文献求助10
39秒前
43秒前
lijunliang完成签到 ,获得积分10
47秒前
周可以发布了新的文献求助10
47秒前
嘻嘻完成签到 ,获得积分10
49秒前
50秒前
52秒前
郝雨竹郝雨竹完成签到 ,获得积分10
55秒前
李爱国应助Nitchi采纳,获得50
56秒前
科研通AI6应助Luke采纳,获得10
1分钟前
英俊的铭应助王海洋采纳,获得10
1分钟前
1分钟前
1分钟前
诚心绿兰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
周可以完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639446
求助须知:如何正确求助?哪些是违规求助? 4748356
关于积分的说明 15006435
捐赠科研通 4797628
什么是DOI,文献DOI怎么找? 2563654
邀请新用户注册赠送积分活动 1522632
关于科研通互助平台的介绍 1482326