Hyperspectral Target Detection Based on Prior Spectral Perception and Local Graph Fusion

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 计算机视觉 理论计算机科学
作者
Xiaobin Zhao,Jun Huang,Yunquan Gao,Qingwang Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13936-13948 被引量:4
标识
DOI:10.1109/jstars.2024.3439560
摘要

With the development of hyperspectral sensing technology, hyperspectral target detection technology plays an important role in remote target detection. However, existing hyperspectral target detection models are poorly adapted to complex backgrounds and mainly focus on the spectral domain, making less use of spatial structure information leading to low target detection rates. Therefore, a new target detection algorithm based on the prior spectral perception and local graph fusion (SPLGF) is proposed. Firstly, the prior spectrum-guided target extraction method is established. This method can take full advantage of the background and target spectral information by local inner and outer window linkage, reduce the impact of spectral variability on target acquisition performance, and improve detection stability. Secondly, the target enhancement strategy based on the Gabor multi-feature graph is proposed. This technique makes full use of multi-directional and multi-scale spatial information, which can reduce the influence of brightness, contrast and amplitude variation on detection performance due to light and angle. Finally, spatial-spectral fusion is executed to achieve target detection. It can make full use of spectral and spatial structure information to improve the target detection effect. Publicly available datasets and real collected datasets are adopted to check the validity of the proposed method. After comparison, it is found that the proposed algorithm has better detection effect than existing baseline methods. The maximum improvement in AUC values are 16.56%-88.16% across the eight datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助ppppp采纳,获得10
刚刚
潇潇发布了新的文献求助10
1秒前
3秒前
3秒前
永毅完成签到,获得积分10
3秒前
XXX发布了新的文献求助10
4秒前
美好斓发布了新的文献求助10
4秒前
桐桐应助Chris采纳,获得10
5秒前
桐桐应助ZLB采纳,获得10
5秒前
alan发布了新的文献求助150
5秒前
奥利奥完成签到 ,获得积分10
6秒前
befond关注了科研通微信公众号
7秒前
8秒前
Iris发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
孙元应助4.8采纳,获得10
9秒前
唠叨的导师完成签到,获得积分10
9秒前
10秒前
无极微光应助Ting采纳,获得20
10秒前
spc68应助小太阳采纳,获得10
10秒前
宋词完成签到,获得积分10
10秒前
Liu完成签到,获得积分20
10秒前
10秒前
桐桐应助Viper采纳,获得10
11秒前
11秒前
12秒前
12秒前
WJ完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI6应助李鼎鼎采纳,获得10
14秒前
浅尝离白发布了新的文献求助50
14秒前
格物致知发布了新的文献求助10
14秒前
14秒前
大力帽子应助caiganyuhhh采纳,获得10
15秒前
光之晨曦发布了新的文献求助10
16秒前
春天发布了新的文献求助10
16秒前
ZT9发布了新的文献求助10
16秒前
ppppp发布了新的文献求助10
16秒前
桐桐应助温柔的星月采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049