Hyperspectral Target Detection Based on Prior Spectral Perception and Local Graph Fusion

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 计算机视觉 理论计算机科学
作者
Xiaobin Zhao,Jun Huang,Yunquan Gao,Qingwang Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13936-13948 被引量:4
标识
DOI:10.1109/jstars.2024.3439560
摘要

With the development of hyperspectral sensing technology, hyperspectral target detection technology plays an important role in remote target detection. However, existing hyperspectral target detection models are poorly adapted to complex backgrounds and mainly focus on the spectral domain, making less use of spatial structure information leading to low target detection rates. Therefore, a new target detection algorithm based on the prior spectral perception and local graph fusion (SPLGF) is proposed. Firstly, the prior spectrum-guided target extraction method is established. This method can take full advantage of the background and target spectral information by local inner and outer window linkage, reduce the impact of spectral variability on target acquisition performance, and improve detection stability. Secondly, the target enhancement strategy based on the Gabor multi-feature graph is proposed. This technique makes full use of multi-directional and multi-scale spatial information, which can reduce the influence of brightness, contrast and amplitude variation on detection performance due to light and angle. Finally, spatial-spectral fusion is executed to achieve target detection. It can make full use of spectral and spatial structure information to improve the target detection effect. Publicly available datasets and real collected datasets are adopted to check the validity of the proposed method. After comparison, it is found that the proposed algorithm has better detection effect than existing baseline methods. The maximum improvement in AUC values are 16.56%-88.16% across the eight datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助guojingjing采纳,获得10
1秒前
正直的紫菜完成签到 ,获得积分10
1秒前
柯柯发布了新的文献求助10
2秒前
Dora完成签到,获得积分10
3秒前
zl发布了新的文献求助10
4秒前
wanghaoran完成签到,获得积分10
4秒前
萧雨墨完成签到,获得积分10
4秒前
正直的冷雁完成签到,获得积分20
5秒前
Hello应助happiness采纳,获得10
5秒前
物理界小垃圾完成签到,获得积分10
6秒前
Lucas应助季文婷采纳,获得10
7秒前
科研通AI2S应助silk采纳,获得10
7秒前
冷艳铁身完成签到 ,获得积分10
7秒前
半只小猪完成签到 ,获得积分20
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
科研狗发布了新的文献求助10
9秒前
ksq完成签到,获得积分10
10秒前
王婧萱萱萱完成签到 ,获得积分10
11秒前
健壮的思枫完成签到,获得积分10
11秒前
科目三应助正直的冷雁采纳,获得10
12秒前
12秒前
xz完成签到 ,获得积分10
13秒前
刘JJ完成签到,获得积分20
13秒前
szw完成签到,获得积分10
13秒前
星辰大海应助luozhen采纳,获得10
13秒前
豆西豆发布了新的文献求助10
14秒前
Sun完成签到,获得积分10
14秒前
dbb发布了新的文献求助10
15秒前
15秒前
sngrdidt2010关注了科研通微信公众号
16秒前
16秒前
y1628521397完成签到 ,获得积分10
16秒前
Pendulium发布了新的文献求助10
16秒前
19秒前
糖糖糖发布了新的文献求助20
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618419
求助须知:如何正确求助?哪些是违规求助? 4703323
关于积分的说明 14922057
捐赠科研通 4757439
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299