Hyperspectral Target Detection Based on Prior Spectral Perception and Local Graph Fusion

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 计算机视觉 理论计算机科学
作者
Xiaobin Zhao,Jun Huang,Yunquan Gao,Qingwang Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13936-13948 被引量:4
标识
DOI:10.1109/jstars.2024.3439560
摘要

With the development of hyperspectral sensing technology, hyperspectral target detection technology plays an important role in remote target detection. However, existing hyperspectral target detection models are poorly adapted to complex backgrounds and mainly focus on the spectral domain, making less use of spatial structure information leading to low target detection rates. Therefore, a new target detection algorithm based on the prior spectral perception and local graph fusion (SPLGF) is proposed. Firstly, the prior spectrum-guided target extraction method is established. This method can take full advantage of the background and target spectral information by local inner and outer window linkage, reduce the impact of spectral variability on target acquisition performance, and improve detection stability. Secondly, the target enhancement strategy based on the Gabor multi-feature graph is proposed. This technique makes full use of multi-directional and multi-scale spatial information, which can reduce the influence of brightness, contrast and amplitude variation on detection performance due to light and angle. Finally, spatial-spectral fusion is executed to achieve target detection. It can make full use of spectral and spatial structure information to improve the target detection effect. Publicly available datasets and real collected datasets are adopted to check the validity of the proposed method. After comparison, it is found that the proposed algorithm has better detection effect than existing baseline methods. The maximum improvement in AUC values are 16.56%-88.16% across the eight datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fkalltn发布了新的文献求助10
刚刚
ivy完成签到,获得积分10
刚刚
罗dd完成签到,获得积分10
刚刚
红鸟完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
火星上半仙完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Lyue完成签到,获得积分10
2秒前
3秒前
852应助锋芒不毕露采纳,获得30
3秒前
科研通AI2S应助自由语柳采纳,获得10
3秒前
wdy发布了新的文献求助20
3秒前
Jiang发布了新的文献求助10
3秒前
大胆的厉关注了科研通微信公众号
3秒前
4秒前
4秒前
共享精神应助Zosty采纳,获得10
4秒前
猪米妮发布了新的文献求助10
5秒前
香蕉觅云应助zhangxl123采纳,获得10
5秒前
酷波er应助13333采纳,获得10
5秒前
zza应助小太阳采纳,获得10
6秒前
6秒前
守护发布了新的文献求助10
6秒前
张牧之完成签到 ,获得积分10
7秒前
多情的寻真完成签到,获得积分10
7秒前
7秒前
15940203654完成签到 ,获得积分10
7秒前
Xc完成签到,获得积分10
8秒前
LaLune发布了新的文献求助10
8秒前
传奇3应助第七个星球采纳,获得10
8秒前
8秒前
8秒前
123发布了新的文献求助10
8秒前
哈哈完成签到 ,获得积分10
8秒前
无极微光应助vidgers采纳,获得20
9秒前
二氧化碳发布了新的文献求助20
9秒前
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444