Long-tailed visual classification based on supervised contrastive learning with multi-view fusion

人工智能 计算机科学 机器学习 加权 一般化 特征(语言学) 代表(政治) 样品(材料) 班级(哲学) 功能(生物学) 模式识别(心理学) 数据挖掘 数学 语言学 哲学 医学 数学分析 化学 色谱法 进化生物学 政治 生物 政治学 法学 放射科
作者
Liang Zeng,Zheng Feng,Jia Chen,Shanshan Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112301-112301
标识
DOI:10.1016/j.knosys.2024.112301
摘要

The vast majority of real-world data follows a long-tail distribution, wherein there is a large number of data points in the head category and a small number in the tail category. The efficacy of two-stage training surpasses that of end-to-end training for long-tail visual classification tasks. Nevertheless, in practical applications, the prevalence lies with the one-stage end-to-end model due to its ease of deployment. Recently, supervised contrastive learning has been employed to address the long-tail distribution with notable accomplishments. Both methodologies aim to mitigate the repulsive influence of the dominant class, while simultaneously striving for an equitable distribution of all classes across the hypersphere. We find that on the basis of the work of the former, giving a dynamically adjusted weighting factor to a class with the classification layer weight as the prior knowledge can increase the number of negative sample pairs for the tail class, thereby enhancing model attention and improving comparison accuracy. In order to further improve the tail class accuracy and the generalization ability of the model, this paper proposes a supervised contrastive learning network based on multi-view compensation feature fusion. The utilization of multi-view input in the network facilitates the incorporation of comprehensive representation information into the classification network, thereby augmenting the semantic understanding of samples in the contrastive learning network. Consequently, this leads to an enhancement in tail accuracy through the application of a dynamic weighted balanced loss function. In a small batch size, the proposed network achieves an average Top1 accuracy of 83.293% and 55.092% on Cifar10-LT and Cifar100-LT datasets respectively, with an imbalance factor of 0.01, thereby yielding significant results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
刚刚
刚刚
刚刚
时尚的书易给时尚的书易的求助进行了留言
刚刚
南北完成签到,获得积分10
1秒前
1秒前
1秒前
MADKAI发布了新的文献求助20
1秒前
xiaoli完成签到,获得积分10
2秒前
清浅完成签到,获得积分10
2秒前
赘婿应助深海soda采纳,获得10
2秒前
WJM完成签到,获得积分10
2秒前
小星星完成签到,获得积分10
2秒前
啵乐乐发布了新的文献求助10
2秒前
爆米花应助瘦瘦白昼采纳,获得10
2秒前
wintercyan发布了新的文献求助20
2秒前
大雁高飞出不胜寒完成签到,获得积分10
3秒前
PSCs发布了新的文献求助10
3秒前
QWJ完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
zxy完成签到,获得积分10
5秒前
sober完成签到,获得积分10
5秒前
5秒前
mmknnk完成签到,获得积分20
5秒前
cc2064完成签到 ,获得积分10
5秒前
调皮冰旋发布了新的文献求助10
6秒前
西哈哈完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
Orange应助幸福胡萝卜采纳,获得10
6秒前
SHDeathlock完成签到,获得积分10
7秒前
习习发布了新的文献求助100
8秒前
Jolene66完成签到,获得积分10
8秒前
研友_8RlQ2n发布了新的文献求助10
8秒前
9秒前
852应助Pangsj采纳,获得10
9秒前
Song完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678