Long-tailed visual classification based on supervised contrastive learning with multi-view fusion

人工智能 计算机科学 机器学习 加权 一般化 特征(语言学) 代表(政治) 样品(材料) 班级(哲学) 功能(生物学) 模式识别(心理学) 数据挖掘 数学 放射科 法学 化学 哲学 数学分析 政治 生物 进化生物学 医学 色谱法 语言学 政治学
作者
Liang Zeng,Zheng Feng,Jia Chen,Shanshan Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112301-112301
标识
DOI:10.1016/j.knosys.2024.112301
摘要

The vast majority of real-world data follows a long-tail distribution, wherein there is a large number of data points in the head category and a small number in the tail category. The efficacy of two-stage training surpasses that of end-to-end training for long-tail visual classification tasks. Nevertheless, in practical applications, the prevalence lies with the one-stage end-to-end model due to its ease of deployment. Recently, supervised contrastive learning has been employed to address the long-tail distribution with notable accomplishments. Both methodologies aim to mitigate the repulsive influence of the dominant class, while simultaneously striving for an equitable distribution of all classes across the hypersphere. We find that on the basis of the work of the former, giving a dynamically adjusted weighting factor to a class with the classification layer weight as the prior knowledge can increase the number of negative sample pairs for the tail class, thereby enhancing model attention and improving comparison accuracy. In order to further improve the tail class accuracy and the generalization ability of the model, this paper proposes a supervised contrastive learning network based on multi-view compensation feature fusion. The utilization of multi-view input in the network facilitates the incorporation of comprehensive representation information into the classification network, thereby augmenting the semantic understanding of samples in the contrastive learning network. Consequently, this leads to an enhancement in tail accuracy through the application of a dynamic weighted balanced loss function. In a small batch size, the proposed network achieves an average Top1 accuracy of 83.293% and 55.092% on Cifar10-LT and Cifar100-LT datasets respectively, with an imbalance factor of 0.01, thereby yielding significant results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助安详的凝天采纳,获得10
刚刚
刚刚
常大美女完成签到,获得积分10
1秒前
深情安青应助自然的岱周采纳,获得10
2秒前
沉静的黎昕完成签到,获得积分10
2秒前
丘比特应助称心的乘云采纳,获得10
2秒前
4秒前
阔达凝天发布了新的文献求助10
4秒前
斯文败类应助万青云采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
壮观艳完成签到,获得积分10
7秒前
7秒前
7秒前
JZ完成签到,获得积分10
8秒前
Shoshana完成签到,获得积分10
9秒前
9秒前
甜北枳完成签到,获得积分10
10秒前
承乐发布了新的文献求助10
10秒前
珊珊发布了新的文献求助10
10秒前
简单幸福完成签到 ,获得积分0
10秒前
12秒前
无花果应助adamwang采纳,获得10
12秒前
12秒前
HCT发布了新的文献求助10
12秒前
14秒前
Kondo发布了新的文献求助10
15秒前
小鱼完成签到 ,获得积分10
16秒前
一一应助有意义采纳,获得10
16秒前
16秒前
橘猫完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
求求你帮帮我完成签到,获得积分10
17秒前
共享精神应助珊珊采纳,获得10
17秒前
共享精神应助禹宛白采纳,获得10
17秒前
17秒前
18秒前
长情的小鸽子完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802