Long-tailed visual classification based on supervised contrastive learning with multi-view fusion

人工智能 计算机科学 机器学习 加权 一般化 特征(语言学) 代表(政治) 样品(材料) 班级(哲学) 功能(生物学) 模式识别(心理学) 数据挖掘 数学 放射科 法学 化学 哲学 数学分析 政治 生物 进化生物学 医学 色谱法 语言学 政治学
作者
Liang Zeng,Zheng Feng,Jia Chen,Shanshan Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112301-112301
标识
DOI:10.1016/j.knosys.2024.112301
摘要

The vast majority of real-world data follows a long-tail distribution, wherein there is a large number of data points in the head category and a small number in the tail category. The efficacy of two-stage training surpasses that of end-to-end training for long-tail visual classification tasks. Nevertheless, in practical applications, the prevalence lies with the one-stage end-to-end model due to its ease of deployment. Recently, supervised contrastive learning has been employed to address the long-tail distribution with notable accomplishments. Both methodologies aim to mitigate the repulsive influence of the dominant class, while simultaneously striving for an equitable distribution of all classes across the hypersphere. We find that on the basis of the work of the former, giving a dynamically adjusted weighting factor to a class with the classification layer weight as the prior knowledge can increase the number of negative sample pairs for the tail class, thereby enhancing model attention and improving comparison accuracy. In order to further improve the tail class accuracy and the generalization ability of the model, this paper proposes a supervised contrastive learning network based on multi-view compensation feature fusion. The utilization of multi-view input in the network facilitates the incorporation of comprehensive representation information into the classification network, thereby augmenting the semantic understanding of samples in the contrastive learning network. Consequently, this leads to an enhancement in tail accuracy through the application of a dynamic weighted balanced loss function. In a small batch size, the proposed network achieves an average Top1 accuracy of 83.293% and 55.092% on Cifar10-LT and Cifar100-LT datasets respectively, with an imbalance factor of 0.01, thereby yielding significant results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyy完成签到,获得积分10
刚刚
小米发布了新的文献求助10
刚刚
万能图书馆应助苏筱采纳,获得10
1秒前
Liii完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
寻梦完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
zzxx发布了新的文献求助10
4秒前
烟花应助carryxu采纳,获得10
5秒前
科研通AI6.1应助和谐迎夏采纳,获得10
5秒前
6秒前
小民同学发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
小马甲应助熊若宇采纳,获得30
10秒前
10秒前
11秒前
11秒前
tttttttttt发布了新的文献求助10
11秒前
12秒前
顾矜应助idiot采纳,获得10
12秒前
13秒前
13秒前
13秒前
wyh发布了新的文献求助10
13秒前
金金完成签到,获得积分10
14秒前
14秒前
项人完成签到,获得积分10
15秒前
15秒前
小蘑菇应助huzhennn采纳,获得10
15秒前
无辜垣完成签到,获得积分10
15秒前
15秒前
WYJie发布了新的文献求助10
17秒前
优雅羽毛发布了新的文献求助10
17秒前
苏和杨发布了新的文献求助10
17秒前
Lny发布了新的文献求助20
18秒前
jiangzhiyun完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761723
求助须知:如何正确求助?哪些是违规求助? 5531466
关于积分的说明 15400456
捐赠科研通 4897978
什么是DOI,文献DOI怎么找? 2634601
邀请新用户注册赠送积分活动 1582773
关于科研通互助平台的介绍 1538027