SQUAMOSA promoter-binding protein-like (SPL) genes play a crucial role in regulating floral induction. Despite such importance, a comprehensive study of SPLs in Chinese cherry flower bud development has been absent. In this study, 32 CpSPL genes were identified. According to expression profiling, CpSPLs exhibited tissue-specific expression and distinct trends throughout flower bud differentiation. Specifically, CpSPL10 was greatly expressed at the beginning of the differentiation, and its role was further investigated. Its overexpression extended the vegetative growth of transgenic tobacco plants, delayed flowering by about 20 days. Moreover, the accumulation of NbELF4 (Early flowering 4) transcripts was enhanced due to the up-regulated levels of CpSPL10 in tobacco plants. ELF4 functions as a major element of the circadian clock; its high expression typically delays the transition from vegetative-to-reproductive growth. Further experiments revealed that CpSPL10 interacts with CpSPL9 or a transposase-derived transcription factor CpFRS5 (FAR1-RELATED SEQUENCE 5) and activates the expression of the downstream gene CpELF4. Notably, the GUS fusing reporter assay detected the activation of CpSPL10 and CpELF4 promoters in shoot apical meristems of transgenic Arabidopsis. These findings revealed the negative regulation of the CpSPL10-CpELF4 module in flower bud differentiation, providing references for supplementing the specific relationships among SPL, FRS, and ELF4.