Explainable machine learning for high frequency trading dynamics discovery

计算机科学 动力学(音乐) 高频交易 人工智能 价格发现 机器学习 算法交易 金融经济学 心理学 经济 教育学 期货合约
作者
Henry Han,Jeffrey Yi‐Lin Forrest,Jiacun Wang,Shuining yuan,Fei Han,Diane Li
出处
期刊:Information Sciences [Elsevier BV]
卷期号:684: 121286-121286
标识
DOI:10.1016/j.ins.2024.121286
摘要

High-frequency trading (HFT) plays an essential role in the financial market. However, discovering and revealing trading dynamics remains a challenge in Fintech. In this study, we propose a novel explainable machine learning approach: Feature-Interpolation-based Dimension Reduction SCAN (FIDR-SCAN) to address the challenge by creating a trading map. The trading map deciphers an HFT security's trading dynamics by marking the status of each transaction, grouping transactions in clusters, and identifying the trading markers. The proposed method presents new feature interpolation techniques to build a more informative and explainable feature space, unveiling hidden trading behaviors. It mines HFT data in their low-dimensional embedding to seek exceptional trading markers and classify the statuses of transactions. We validate the meaningfulness and effectiveness of the trading markers discovered by FIDR-SCAN in trading as well as examining its special characteristics. Additionally, we apply the proposed algorithm to cryptocurrency data and achieve reliable performance. We design AI trading algorithms by reusing trading markers identified during explainable trading dynamics discovery, applying them to HFT stock and cryptocurrency markets, besides constructing trading machines using identified trading markers. To the best of our knowledge, this study is the first to use interpretable machine learning to reveal HFT trading dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助yukuai采纳,获得10
刚刚
CodeCraft应助tomorrow采纳,获得10
1秒前
万能图书馆应助ciooli采纳,获得10
1秒前
搜集达人应助yuebaoji采纳,获得10
1秒前
怡然幻然完成签到,获得积分10
2秒前
姚一发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
Hello应助uglyboy采纳,获得30
3秒前
寒色完成签到,获得积分10
3秒前
4秒前
tt发布了新的文献求助10
4秒前
5秒前
5秒前
tds完成签到,获得积分10
7秒前
7秒前
8秒前
CodeCraft应助zyy采纳,获得10
9秒前
9秒前
10秒前
10秒前
tds发布了新的文献求助10
10秒前
NFCJ完成签到 ,获得积分10
11秒前
ll完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
黄丽珍发布了新的文献求助10
13秒前
坦率的匪举报梧桐求助涉嫌违规
13秒前
ciooli发布了新的文献求助10
13秒前
14秒前
多吃肉发布了新的文献求助10
14秒前
lily发布了新的文献求助10
14秒前
14秒前
15秒前
弄香完成签到,获得积分10
15秒前
李健应助奋斗蜗牛采纳,获得10
15秒前
foceman发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126