Elastography-based AI model can predict axillary status after neoadjuvant chemotherapy in breast cancer with nodal involvement: A prospective, multicenter, diagnostic study

医学 乳腺癌 肿瘤科 化疗 弹性成像 节的 放射科 前瞻性队列研究 新辅助治疗 内科学 癌症 超声波
作者
Jiaxin Huang,Yao Lu,Yu-Ting Tan,Fengtao Liu,Yiliang Li,Xueyan Wang,Jiahui Huang,Shi-Yang Lin,Gui-Ling Huang,Yu-Ting Zhang,Xiao‐Qing Pei
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002105
摘要

Objective: To develop a model for accurate prediction of axillary lymph node (LN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients with nodal involvement. Methods: Between October 2018 and February 2024, 671 breast cancer patients with biopsy-proven LN metastasis who received NAC followed by axillary LN dissection were enrolled in this prospective, multicenter study. Preoperative ultrasound (US) images, including B-mode ultrasound (BUS) and shear wave elastography (SWE), were obtained. The included patients were randomly divided at a ratio of 8:2 into a training set and an independent test set, with five-fold cross-validation applied to training set. We first identified clinicopathological characteristics and conventional US features significantly associated with the axillary LN response and developed corresponding prediction models. We then constructed deep learning radiomics (DLR) models based on BUS and SWE data. Models performances were compared, and a combination model was developed using significant clinicopathological data and interpreted US features with the SWE-based DLR model. Discrimination, calibration and clinical utility of this model were analyzed using receiver operating characteristic curve, calibration curve and decision curve, respectively. Results: Axillary pathologic complete response (pCR) was achieved in 52.41% of patients. In the test cohort, the clinicopathologic model had an accuracy of 71.30%, while radiologists’ diagnoses ranged from 64.26% to 71.11%, indicating limited to moderate predictive ability for the axillary response to NAC. The SWE-based DLR model, with an accuracy of 80.81%, significantly outperformed the BUS-based DLR model, which scored 59.57%. The combination DLR model boasted an accuracy of 88.70% and a false-negative rate of 8.82%. It demonstrated strong discriminatory ability (AUC, 0.95), precise calibration ( p value obtained by Hosmer–Lemeshow goodness-of-fit test, 0.68), and practical clinical utility (probability threshold, 2.5-97.5%). Conclusions: The combination SWE-based DLR model can predict the axillary status after NAC in patients with node-positive breast cancer, and thus, may inform clinical decision-making to help avoid unnecessary axillary LN dissection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
豆豆发布了新的文献求助10
1秒前
replay完成签到,获得积分10
1秒前
慕青应助小Y采纳,获得10
1秒前
暗夜星辰发布了新的文献求助10
1秒前
1秒前
卡卡西应助虚幻德地采纳,获得20
2秒前
bryceeluo完成签到,获得积分10
2秒前
3秒前
MORNING完成签到,获得积分20
3秒前
天天完成签到,获得积分10
4秒前
4秒前
QR发布了新的文献求助20
4秒前
今后应助笨笨电灯胆采纳,获得10
5秒前
期待发布了新的文献求助10
5秒前
5秒前
小蘑菇应助流北爷采纳,获得10
5秒前
维尼熊完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
7秒前
lululu完成签到,获得积分10
7秒前
小马甲应助111采纳,获得10
8秒前
MORNING发布了新的文献求助10
8秒前
苯巴比妥不妥完成签到,获得积分10
8秒前
天天发布了新的文献求助10
8秒前
chen完成签到 ,获得积分10
9秒前
李策发布了新的文献求助10
10秒前
10秒前
Gengen完成签到 ,获得积分10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
orixero应助GBRUCE采纳,获得30
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
coolkid应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154