Elastography-based AI model can predict axillary status after neoadjuvant chemotherapy in breast cancer with nodal involvement: A prospective, multicenter, diagnostic study

医学 乳腺癌 肿瘤科 化疗 弹性成像 节的 放射科 前瞻性队列研究 新辅助治疗 内科学 癌症 超声波
作者
Jiaxin Huang,Yao Lu,Yuting Tan,Fengtao Liu,Yiliang Li,Xueyan Wang,Jiahui Huang,Shi-Yang Lin,Gui-Ling Huang,Gui-Ling Huang,Xiao‐Qing Pei
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000002105
摘要

Objective: To develop a model for accurate prediction of axillary lymph node (LN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients with nodal involvement. Methods: Between October 2018 and February 2024, 671 breast cancer patients with biopsy-proven LN metastasis who received NAC followed by axillary LN dissection were enrolled in this prospective, multicenter study. Preoperative ultrasound (US) images, including B-mode ultrasound (BUS) and shear wave elastography (SWE), were obtained. The included patients were randomly divided at a ratio of 8:2 into a training set and an independent test set, with five-fold cross-validation applied to training set. We first identified clinicopathological characteristics and conventional US features significantly associated with the axillary LN response and developed corresponding prediction models. We then constructed deep learning radiomics (DLR) models based on BUS and SWE data. Models performances were compared, and a combination model was developed using significant clinicopathological data and interpreted US features with the SWE-based DLR model. Discrimination, calibration and clinical utility of this model were analyzed using receiver operating characteristic curve, calibration curve and decision curve, respectively. Results: Axillary pathologic complete response (pCR) was achieved in 52.41% of patients. In the test cohort, the clinicopathologic model had an accuracy of 71.30%, while radiologists’ diagnoses ranged from 64.26% to 71.11%, indicating limited to moderate predictive ability for the axillary response to NAC. The SWE-based DLR model, with an accuracy of 80.81%, significantly outperformed the BUS-based DLR model, which scored 59.57%. The combination DLR model boasted an accuracy of 88.70% and a false-negative rate of 8.82%. It demonstrated strong discriminatory ability (AUC, 0.95), precise calibration ( p value obtained by Hosmer–Lemeshow goodness-of-fit test, 0.68), and practical clinical utility (probability threshold, 2.5-97.5%). Conclusions: The combination SWE-based DLR model can predict the axillary status after NAC in patients with node-positive breast cancer, and thus, may inform clinical decision-making to help avoid unnecessary axillary LN dissection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kajimi完成签到,获得积分10
刚刚
zx发布了新的文献求助20
1秒前
叮叮完成签到,获得积分10
3秒前
阿東完成签到 ,获得积分10
3秒前
offshore完成签到 ,获得积分10
3秒前
⊙▽⊙完成签到,获得积分10
4秒前
7秒前
gaga完成签到,获得积分10
8秒前
ss关闭了ss文献求助
8秒前
9秒前
呼呼完成签到 ,获得积分10
9秒前
lx840518发布了新的文献求助20
11秒前
纯真的诗兰完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
哈哈不百度完成签到 ,获得积分10
14秒前
闪电侠发布了新的文献求助10
14秒前
Hello应助七七采纳,获得10
17秒前
科研通AI2S应助可靠馒头采纳,获得10
18秒前
19秒前
李健应助111采纳,获得10
20秒前
鬼马baby完成签到,获得积分10
21秒前
LIUJIE发布了新的文献求助10
26秒前
27秒前
ryen发布了新的文献求助10
31秒前
31秒前
33秒前
领导范儿应助科研通管家采纳,获得10
33秒前
天天快乐应助科研通管家采纳,获得100
33秒前
李健应助科研通管家采纳,获得10
33秒前
英姑应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
哈哈哈完成签到 ,获得积分10
35秒前
小唐完成签到,获得积分10
35秒前
111发布了新的文献求助10
36秒前
Meredith给诸觅双的求助进行了留言
36秒前
忧虑的钻石应助景泰蓝采纳,获得10
37秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816611
关于积分的说明 7913235
捐赠科研通 2476117
什么是DOI,文献DOI怎么找? 1318699
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388