Knowledge-Augmented Deep Learning for Segmenting and Detecting Cerebral Aneurysms With CT Angiography: A Multicenter Study

医学 数字减影血管造影 动脉瘤 放射科 接收机工作特性 血管造影 脑血管造影 数据集 分割 计算机断层血管造影 核医学 人工智能 内科学 计算机科学
作者
Jianyong Wei,X Z Song,Xiaoer Wei,Zhiwen Yang,Lisong Dai,Mengfei Wang,Zheng Sun,Yidong Jin,Chune Ma,Chunhong Hu,Xueqian Xie,Zhenghan Yang,Yonggao Zhang,Fajin Lv,Jie Lu,Yueqi Zhu,Yuehua Li
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:8
标识
DOI:10.1148/radiol.233197
摘要

Background Deep learning (DL) could improve the labor-intensive, challenging processes of diagnosing cerebral aneurysms but requires large multicenter data sets. Purpose To construct a DL model using a multicenter data set for accurate cerebral aneurysm segmentation and detection on CT angiography (CTA) images and to compare its performance with radiology reports. Materials and Methods Consecutive head or head and neck CTA images of suspected unruptured cerebral aneurysms were gathered retrospectively from eight hospitals between February 2018 and October 2021 for model development. An external test set with reference standard digital subtraction angiography (DSA) scans was obtained retrospectively from one of the eight hospitals between February 2022 and February 2023. Radiologists (reference standard) assessed aneurysm segmentation, while model performance was evaluated using the Dice similarity coefficient (DSC). The model's aneurysm detection performance was assessed by sensitivity and comparing areas under the receiver operating characteristic curves (AUCs) between the model and radiology reports in the DSA data set with use of the DeLong test. Results Images from 6060 patients (mean age, 56 years ± 12 [SD]; 3375 [55.7%] female) were included for model development (training: 4342; validation: 1086; and internal test set: 632). Another 118 patients (mean age, 59 years ± 14; 79 [66.9%] female) were included in an external test set to evaluate performance based on DSA. The model achieved a DSC of 0.87 for aneurysm segmentation performance in the internal test set. Using DSA, the model achieved 85.7% (108 of 126 aneurysms [95% CI: 78.1, 90.1]) sensitivity in detecting aneurysms on per-vessel analysis, with no evidence of a difference versus radiology reports (AUC, 0.93 [95% CI: 0.90, 0.95] vs 0.91 [95% CI: 0.87, 0.94];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助zkc采纳,获得10
刚刚
崔崔完成签到,获得积分10
1秒前
jing完成签到,获得积分10
1秒前
1秒前
脑洞疼应助喜庆采纳,获得10
1秒前
蓝桉完成签到,获得积分10
1秒前
善学以致用应助hhh123采纳,获得10
1秒前
1秒前
2秒前
2秒前
darcy发布了新的文献求助10
2秒前
zhouyunan完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
DH发布了新的文献求助20
3秒前
小匀匀21完成签到,获得积分10
3秒前
火星上西牛完成签到,获得积分10
3秒前
汉堡包应助牛奶煮萝莉采纳,获得10
4秒前
帅锅关注了科研通微信公众号
4秒前
4秒前
小王同学完成签到,获得积分10
4秒前
丸子发布了新的文献求助10
4秒前
陆晓亦完成签到,获得积分0
4秒前
今后应助张启帆采纳,获得10
5秒前
SciGPT应助步步采纳,获得10
5秒前
6秒前
6秒前
Thor发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
阳正发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
jing发布了新的文献求助30
8秒前
8秒前
林夕完成签到,获得积分10
8秒前
Esperanza完成签到,获得积分10
8秒前
Lucas应助哈哈哈采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552270
求助须知:如何正确求助?哪些是违规求助? 4637012
关于积分的说明 14647248
捐赠科研通 4578939
什么是DOI,文献DOI怎么找? 2511174
邀请新用户注册赠送积分活动 1486363
关于科研通互助平台的介绍 1457547