Knowledge-Augmented Deep Learning for Segmenting and Detecting Cerebral Aneurysms With CT Angiography: A Multicenter Study

医学 数字减影血管造影 动脉瘤 放射科 接收机工作特性 血管造影 脑血管造影 数据集 分割 计算机断层血管造影 核医学 人工智能 内科学 计算机科学
作者
Jianyong Wei,X Z Song,Xiaoer Wei,Zhiwen Yang,Lisong Dai,Mengfei Wang,Zheng Sun,Yidong Jin,Chune Ma,Chunhong Hu,Xueqian Xie,Zhenghan Yang,Yonggao Zhang,Fajin Lv,Jie Lu,Yueqi Zhu,Yuehua Li
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:3
标识
DOI:10.1148/radiol.233197
摘要

Background Deep learning (DL) could improve the labor-intensive, challenging processes of diagnosing cerebral aneurysms but requires large multicenter data sets. Purpose To construct a DL model using a multicenter data set for accurate cerebral aneurysm segmentation and detection on CT angiography (CTA) images and to compare its performance with radiology reports. Materials and Methods Consecutive head or head and neck CTA images of suspected unruptured cerebral aneurysms were gathered retrospectively from eight hospitals between February 2018 and October 2021 for model development. An external test set with reference standard digital subtraction angiography (DSA) scans was obtained retrospectively from one of the eight hospitals between February 2022 and February 2023. Radiologists (reference standard) assessed aneurysm segmentation, while model performance was evaluated using the Dice similarity coefficient (DSC). The model's aneurysm detection performance was assessed by sensitivity and comparing areas under the receiver operating characteristic curves (AUCs) between the model and radiology reports in the DSA data set with use of the DeLong test. Results Images from 6060 patients (mean age, 56 years ± 12 [SD]; 3375 [55.7%] female) were included for model development (training: 4342; validation: 1086; and internal test set: 632). Another 118 patients (mean age, 59 years ± 14; 79 [66.9%] female) were included in an external test set to evaluate performance based on DSA. The model achieved a DSC of 0.87 for aneurysm segmentation performance in the internal test set. Using DSA, the model achieved 85.7% (108 of 126 aneurysms [95% CI: 78.1, 90.1]) sensitivity in detecting aneurysms on per-vessel analysis, with no evidence of a difference versus radiology reports (AUC, 0.93 [95% CI: 0.90, 0.95] vs 0.91 [95% CI: 0.87, 0.94];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawn发布了新的文献求助10
刚刚
干饭人完成签到,获得积分10
1秒前
heure发布了新的文献求助10
2秒前
3秒前
3秒前
科研发布了新的文献求助10
3秒前
Notdodead完成签到,获得积分10
3秒前
3秒前
nn发布了新的文献求助10
4秒前
苹果秋灵发布了新的文献求助10
8秒前
CipherSage应助杜兰特采纳,获得10
8秒前
脑洞疼应助安笙凉城采纳,获得10
9秒前
唠叨的似狮完成签到,获得积分10
9秒前
DWRH发布了新的文献求助10
9秒前
9秒前
apk866完成签到,获得积分10
11秒前
迪仔完成签到 ,获得积分10
16秒前
sdfhjbhsdfb完成签到 ,获得积分10
17秒前
17秒前
64658应助DWRH采纳,获得10
19秒前
yyyyy完成签到,获得积分10
19秒前
20秒前
666应助nn采纳,获得10
21秒前
人生如梦应助干饭人采纳,获得10
21秒前
苹果秋灵完成签到,获得积分10
21秒前
希望天下0贩的0应助wy97采纳,获得10
22秒前
绿色催化完成签到,获得积分10
22秒前
生动的若之完成签到 ,获得积分10
24秒前
杜兰特发布了新的文献求助10
24秒前
25秒前
25秒前
俭朴夜香完成签到,获得积分10
26秒前
科研鸟发布了新的文献求助10
28秒前
29秒前
30秒前
31秒前
牛牛眉目发布了新的文献求助10
31秒前
酷波er应助科研通管家采纳,获得10
32秒前
昵称应助科研通管家采纳,获得10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511761
关于积分的说明 11159641
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804374