Knowledge-Augmented Deep Learning for Segmenting and Detecting Cerebral Aneurysms With CT Angiography: A Multicenter Study

医学 数字减影血管造影 动脉瘤 放射科 接收机工作特性 血管造影 脑血管造影 数据集 分割 计算机断层血管造影 核医学 人工智能 内科学 计算机科学
作者
Jianyong Wei,Xinyu Song,Xiaoer Wei,Zhiwen Yang,Lisong Dai,Mengfei Wang,Zheng Sun,Yidong Jin,Chune Ma,Chunhong Hu,Xueqian Xie,Zhenghan Yang,Yonggao Zhang,Fajin Lv,Jie Lu,Yueqi Zhu,Yuehua Li
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2)
标识
DOI:10.1148/radiol.233197
摘要

Background Deep learning (DL) could improve the labor-intensive, challenging processes of diagnosing cerebral aneurysms but requires large multicenter data sets. Purpose To construct a DL model using a multicenter data set for accurate cerebral aneurysm segmentation and detection on CT angiography (CTA) images and to compare its performance with radiology reports. Materials and Methods Consecutive head or head and neck CTA images of suspected unruptured cerebral aneurysms were gathered retrospectively from eight hospitals between February 2018 and October 2021 for model development. An external test set with reference standard digital subtraction angiography (DSA) scans was obtained retrospectively from one of the eight hospitals between February 2022 and February 2023. Radiologists (reference standard) assessed aneurysm segmentation, while model performance was evaluated using the Dice similarity coefficient (DSC). The model's aneurysm detection performance was assessed by sensitivity and comparing areas under the receiver operating characteristic curves (AUCs) between the model and radiology reports in the DSA data set with use of the DeLong test. Results Images from 6060 patients (mean age, 56 years ± 12 [SD]; 3375 [55.7%] female) were included for model development (training: 4342; validation: 1086; and internal test set: 632). Another 118 patients (mean age, 59 years ± 14; 79 [66.9%] female) were included in an external test set to evaluate performance based on DSA. The model achieved a DSC of 0.87 for aneurysm segmentation performance in the internal test set. Using DSA, the model achieved 85.7% (108 of 126 aneurysms [95% CI: 78.1, 90.1]) sensitivity in detecting aneurysms on per-vessel analysis, with no evidence of a difference versus radiology reports (AUC, 0.93 [95% CI: 0.90, 0.95] vs 0.91 [95% CI: 0.87, 0.94];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
争争完成签到,获得积分10
刚刚
九次方完成签到,获得积分10
1秒前
烟花应助mmol采纳,获得10
1秒前
2秒前
稳赚赚完成签到,获得积分10
2秒前
2秒前
Yfufu发布了新的文献求助10
2秒前
kkx发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
Shirley发布了新的文献求助100
4秒前
完美世界应助jennyyu采纳,获得10
5秒前
传奇3应助uvk采纳,获得10
6秒前
6秒前
Bingtao_Lian完成签到 ,获得积分10
7秒前
ssl完成签到 ,获得积分10
7秒前
酷波er应助小真白采纳,获得10
8秒前
星星虫完成签到,获得积分10
9秒前
ZJ-195完成签到,获得积分10
9秒前
奈奈iii发布了新的文献求助10
11秒前
11秒前
QQ完成签到,获得积分20
11秒前
12秒前
13秒前
13秒前
lankeren完成签到 ,获得积分10
13秒前
小明完成签到,获得积分10
14秒前
美好的仰完成签到 ,获得积分10
14秒前
QQ发布了新的文献求助10
14秒前
断罪残影完成签到 ,获得积分10
15秒前
中和皇极完成签到,获得积分0
15秒前
15秒前
不配.应助早早采纳,获得10
15秒前
充电宝应助怒发5篇sci采纳,获得10
15秒前
71发布了新的文献求助10
16秒前
17秒前
斯文败类应助fanpengzhen采纳,获得10
17秒前
霸气擎宇发布了新的文献求助30
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847