亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TBNet: A texture and boundary-aware network for small weak object detection in remote-sensing imagery

人工智能 计算机视觉 纹理(宇宙学) 边界(拓扑) 计算机科学 目标检测 对象(语法) 遥感 模式识别(心理学) 图像(数学) 地理 数学 数学分析
作者
Zheng Li,Yongcheng Wang,Dongdong Xu,Yunxiao Gao,Tianqi Zhao
出处
期刊:Pattern Recognition [Elsevier]
卷期号:158: 110976-110976
标识
DOI:10.1016/j.patcog.2024.110976
摘要

Object detection is of great importance for remote sensing image interpretation work and has received significant attention. However, small weak object detection has always been a challenge. The main reason is that the critical information of these objects, such as textures and boundaries, is suppressed by the background and cannot effectively express their own characteristics. To address this issue, we introduce a novel texture and boundary-aware network (TBNet) in this paper. Firstly, we propose a texture-aware enhancement module (TAEM) to explore the texture details within the images. TAEM captures pixel correlations to perceive the distribution of texture in the objects. Secondly, a boundary-aware fusion module (BAFM) is introduced to emphasize spatial positions. BAFM can extract the edge information to guide the prediction of small weak objects. Finally, a task-decoupled RCNN (TD-RCNN) is designed to separate classification and regression tasks. TD-RCNN achieves fine-grained detection, avoiding compromises between subtasks. Comprehensive experiments on four public datasets, DIOR NWPU VHR-10, RSOD, and AI-TOD, demonstrate that TBNet achieves state-of-the-art performance compared to competitors. The model is also evaluated on UAVOD-10, which collects numerous small weak objects. TBNet achieves state-of-the-art results while significantly outperforming competitors, proving its ability to detect small weak objects. • TBNet is designed to detect small and weak objects in complex remote sensing images. • The network enhances object representations by exploring texture and boundary features. • TD-RCNN avoids feature coupling from shared classification and localization. • Results show the model detects remote-sensing objects effectively, especially weak ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
liuyuannzhuo发布了新的文献求助10
26秒前
39秒前
DayFu完成签到 ,获得积分10
49秒前
56秒前
1分钟前
1分钟前
liuyuannzhuo发布了新的文献求助10
1分钟前
1分钟前
CQU科研萌新完成签到,获得积分10
1分钟前
隐形曼青应助CQU科研萌新采纳,获得10
1分钟前
Singularity应助tlx采纳,获得20
1分钟前
1分钟前
上官若男应助执着夏山采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
充电宝应助执着夏山采纳,获得10
2分钟前
2分钟前
3分钟前
良辰应助科研通管家采纳,获得10
3分钟前
3分钟前
甜蜜发带完成签到 ,获得积分10
4分钟前
4分钟前
执着夏山发布了新的文献求助10
4分钟前
4分钟前
一墨完成签到,获得积分10
4分钟前
4分钟前
清爽夜雪完成签到,获得积分10
4分钟前
从容栾发布了新的文献求助10
5分钟前
科研搬运工完成签到,获得积分10
5分钟前
无花果应助Demi_Ming采纳,获得10
5分钟前
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
良辰应助科研通管家采纳,获得10
5分钟前
5分钟前
Demi_Ming发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798061
关于积分的说明 7826588
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527