TBNet: A texture and boundary-aware network for small weak object detection in remote-sensing imagery

人工智能 计算机视觉 纹理(宇宙学) 边界(拓扑) 计算机科学 目标检测 对象(语法) 遥感 模式识别(心理学) 图像(数学) 地理 数学 数学分析
作者
Zheng Li,Yongcheng Wang,Dongdong Xu,Yunxiao Gao,Tianqi Zhao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:158: 110976-110976 被引量:1
标识
DOI:10.1016/j.patcog.2024.110976
摘要

Object detection is of great importance for remote sensing image interpretation work and has received significant attention. However, small weak object detection has always been a challenge. The main reason is that the critical information of these objects, such as textures and boundaries, is suppressed by the background and cannot effectively express their own characteristics. To address this issue, we introduce a novel texture and boundary-aware network (TBNet) in this paper. Firstly, we propose a texture-aware enhancement module (TAEM) to explore the texture details within the images. TAEM captures pixel correlations to perceive the distribution of texture in the objects. Secondly, a boundary-aware fusion module (BAFM) is introduced to emphasize spatial positions. BAFM can extract the edge information to guide the prediction of small weak objects. Finally, a task-decoupled RCNN (TD-RCNN) is designed to separate classification and regression tasks. TD-RCNN achieves fine-grained detection, avoiding compromises between subtasks. Comprehensive experiments on four public datasets, DIOR NWPU VHR-10, RSOD, and AI-TOD, demonstrate that TBNet achieves state-of-the-art performance compared to competitors. The model is also evaluated on UAVOD-10, which collects numerous small weak objects. TBNet achieves state-of-the-art results while significantly outperforming competitors, proving its ability to detect small weak objects. • TBNet is designed to detect small and weak objects in complex remote sensing images. • The network enhances object representations by exploring texture and boundary features. • TD-RCNN avoids feature coupling from shared classification and localization. • Results show the model detects remote-sensing objects effectively, especially weak ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兮兮糖发布了新的文献求助10
刚刚
隐形曼青应助巫马采纳,获得10
刚刚
1秒前
1秒前
小张发布了新的文献求助10
2秒前
baby发布了新的文献求助10
3秒前
酷波er应助nuyoah采纳,获得10
3秒前
阳光不弱发布了新的文献求助10
3秒前
4秒前
yedingde发布了新的文献求助30
4秒前
麦冬冬完成签到,获得积分10
4秒前
深情安青应助曼珠沙华采纳,获得10
6秒前
科研通AI5应助xie老板采纳,获得10
6秒前
emmm发布了新的文献求助10
6秒前
睡睡发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
飘逸问晴发布了新的文献求助10
9秒前
呆萌蜗牛应助阳光不弱采纳,获得10
9秒前
Tugeouc给搞怪的明辉的求助进行了留言
10秒前
踏实的怜菡完成签到 ,获得积分10
10秒前
han发布了新的文献求助10
12秒前
xzx完成签到 ,获得积分10
13秒前
14秒前
斯文的鱼发布了新的文献求助10
15秒前
YSL发布了新的文献求助10
15秒前
天天快乐应助yyyy采纳,获得10
15秒前
小蘑菇应助郭生采纳,获得10
15秒前
17秒前
睡睡完成签到,获得积分10
17秒前
18秒前
星辰大海应助咿咿呀呀采纳,获得10
18秒前
赵梦娜发布了新的文献求助10
20秒前
20秒前
小蘑菇应助xin_qin_Wei采纳,获得10
21秒前
wanci应助一路生花采纳,获得30
21秒前
FashionBoy应助可爱因子采纳,获得10
21秒前
共享精神应助渺渺采纳,获得10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745576
求助须知:如何正确求助?哪些是违规求助? 3288529
关于积分的说明 10059330
捐赠科研通 3004763
什么是DOI,文献DOI怎么找? 1649819
邀请新用户注册赠送积分活动 785583
科研通“疑难数据库(出版商)”最低求助积分说明 751137