TBNet: A texture and boundary-aware network for small weak object detection in remote-sensing imagery

人工智能 计算机视觉 纹理(宇宙学) 边界(拓扑) 计算机科学 目标检测 对象(语法) 遥感 模式识别(心理学) 图像(数学) 地理 数学 数学分析
作者
Zheng Li,Yongcheng Wang,Dongdong Xu,Yunxiao Gao,Tianqi Zhao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:158: 110976-110976 被引量:5
标识
DOI:10.1016/j.patcog.2024.110976
摘要

Object detection is of great importance for remote sensing image interpretation work and has received significant attention. However, small weak object detection has always been a challenge. The main reason is that the critical information of these objects, such as textures and boundaries, is suppressed by the background and cannot effectively express their own characteristics. To address this issue, we introduce a novel texture and boundary-aware network (TBNet) in this paper. Firstly, we propose a texture-aware enhancement module (TAEM) to explore the texture details within the images. TAEM captures pixel correlations to perceive the distribution of texture in the objects. Secondly, a boundary-aware fusion module (BAFM) is introduced to emphasize spatial positions. BAFM can extract the edge information to guide the prediction of small weak objects. Finally, a task-decoupled RCNN (TD-RCNN) is designed to separate classification and regression tasks. TD-RCNN achieves fine-grained detection, avoiding compromises between subtasks. Comprehensive experiments on four public datasets, DIOR NWPU VHR-10, RSOD, and AI-TOD, demonstrate that TBNet achieves state-of-the-art performance compared to competitors. The model is also evaluated on UAVOD-10, which collects numerous small weak objects. TBNet achieves state-of-the-art results while significantly outperforming competitors, proving its ability to detect small weak objects. • TBNet is designed to detect small and weak objects in complex remote sensing images. • The network enhances object representations by exploring texture and boundary features. • TD-RCNN avoids feature coupling from shared classification and localization. • Results show the model detects remote-sensing objects effectively, especially weak ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨天完成签到,获得积分10
1秒前
顶刊在逃一作完成签到,获得积分10
1秒前
冰雪完成签到,获得积分10
3秒前
情怀应助12采纳,获得10
3秒前
孙燕应助还好采纳,获得10
5秒前
李洛洛完成签到,获得积分10
5秒前
何事惊慌完成签到,获得积分10
6秒前
6秒前
共享精神应助丘山采纳,获得30
9秒前
完美世界应助薄饼哥丶采纳,获得10
9秒前
11秒前
11秒前
杨纯宇发布了新的文献求助10
12秒前
12完成签到,获得积分10
13秒前
12发布了新的文献求助10
16秒前
16秒前
当代鲁迅关注了科研通微信公众号
17秒前
菘蓝泽蓼完成签到,获得积分10
18秒前
润雨流云完成签到 ,获得积分10
19秒前
19秒前
Nara2021完成签到,获得积分10
20秒前
21秒前
PYF完成签到,获得积分10
21秒前
影儿发布了新的文献求助10
22秒前
Junru完成签到,获得积分10
25秒前
丘山发布了新的文献求助30
26秒前
hatim完成签到,获得积分10
27秒前
28秒前
科研通AI2S应助杨纯宇采纳,获得10
29秒前
乐观沛白发布了新的文献求助10
34秒前
机智傀斗完成签到,获得积分0
35秒前
35秒前
36秒前
可爱的函函应助Wonder罗采纳,获得10
38秒前
39秒前
Echo完成签到,获得积分0
40秒前
41秒前
faye502发布了新的文献求助20
41秒前
43秒前
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652