DualSyn: A dual-level feature interaction method to predict synergistic drug combinations

计算机科学 水准点(测量) 特征(语言学) 机器学习 任务(项目管理) 人工智能 药品 对偶(语法数字) 医学 药理学 文学类 哲学 艺术 大地测量学 经济 管理 地理 语言学
作者
Zehui Chen,Zimeng Li,Xiangzhen Shen,Yuansheng Liu,Xuan Lin,Daojian Zeng,Xiangxiang Zeng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:257: 125065-125065
标识
DOI:10.1016/j.eswa.2024.125065
摘要

Drug combination therapy can reduce drug resistance and improve treatment efficacy, making it an increasingly promising cancer treatment method. Although existing computational methods have achieved significant success, predictions on unseen data remain a challenge. There are complex associations between drug pairs and cell lines, and existing models cannot capture more general feature interaction patterns among them, which hinders the ability of models to generalize from seen samples to unseen samples. To address this problem, we propose a dual-level feature interaction model called DualSyn to efficiently predict the synergy of drug combination therapy. This model first achieves interaction at the drug pair level through the drugs feature extraction module. We also designed two modules to further deepen the interaction at the drug pair and cell line level from two different perspectives. The high-order relation module is used to capture the high-order relationships among the three features, and the global information module focuses on preserving global information details. DualSyn not only improves the AUC by 2.15% compared with the state-of-the-art methods in the transductive task of the benchmark dataset, but also surpasses them in all four tasks under the inductive setting. Overall, DualSyn shows great potential in predicting and explaining drug synergistic therapies, providing a powerful new tool for future clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到,获得积分10
2秒前
乐乐应助潘善若采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
小小完成签到,获得积分10
5秒前
西瓜汁完成签到,获得积分10
6秒前
向日葵完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
王汉韬发布了新的文献求助10
10秒前
10秒前
12秒前
鸢也完成签到,获得积分10
12秒前
13秒前
110发布了新的文献求助10
14秒前
15秒前
露露发布了新的文献求助10
15秒前
坚定路人完成签到,获得积分10
16秒前
潘善若发布了新的文献求助10
17秒前
SciGPT应助沈清酌采纳,获得10
18秒前
19秒前
19秒前
20秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
隐形曼青应助Lili采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
jyy应助科研通管家采纳,获得20
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158