Identification of missing higher-order interactions in complex networks

鉴定(生物学) 计算机科学 订单(交换) 统计物理学 物理 业务 生物 财务 植物
作者
Chengjun Zhang,Wang Suxun,Wenbin Yu,Peijun Zhao,Yadang Chen,Jiarui Gu,Zhengju Ren,Jin Liu
出处
期刊:Journal of Complex Networks [Oxford University Press]
卷期号:12 (4)
标识
DOI:10.1093/comnet/cnae031
摘要

Abstract Link prediction has always played a crucial role in unveiling the structural patterns and evolutionary rules of networks. However, as research on complex networks has progressed, the limitations of solely exploring low-order structures have become increasingly apparent. The introduction of high-order organizational theories has not only enriched the conceptual framework of network dynamics but also opened new avenues for investigating the mechanisms of network evolution and adaptation. The complexity and richness of high-order networks pose challenges for link prediction. This study introduces two novel approaches to forecast links in higher-order networks. The first one is to predict links directly in higher-order networks (LPHN), which directly predicts missing links within the higher-order network based on its structure; the other one is to predict higher-order links via link prediction in low-order networks(PHLN), which starts by predicting absent links in a low-order network. Subsequently, the inferred low-order structure is employed as a foundation to extrapolate and reconstruct the predicted higher-order network. Upon comparing the higher-order networks generated by both LPHN and PHLN with the original higher-order networks constructed directly from low-order networks, we discovered that the higher-order networks produced by PHLN exhibit greater accuracy and exhibit a more similar scale of giant components to the original higher-order network. Consequently, the PHLN demonstrates enhanced precision in forecasting the structure of higher-order networks while preserving networks’ structural integrity. Moreover, PHLN exhibits superior performance in the context of large-scale and sparsely connected networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Umwandlung完成签到,获得积分10
1秒前
gorgeousgaga完成签到,获得积分10
1秒前
2秒前
2秒前
科研通AI5应助ipeakkka采纳,获得10
3秒前
852应助章家炜采纳,获得10
4秒前
Gauss应助张小汉采纳,获得30
6秒前
嘻嘻发布了新的文献求助10
6秒前
杰哥完成签到 ,获得积分10
7秒前
Ava应助赵小可可可可采纳,获得10
7秒前
科研通AI5应助kento采纳,获得30
8秒前
nkmenghan发布了新的文献求助10
9秒前
12秒前
redondo10完成签到,获得积分0
13秒前
14秒前
乔qiao发布了新的文献求助30
17秒前
WZ0904发布了新的文献求助10
18秒前
poegtam完成签到,获得积分10
19秒前
大胆盼兰发布了新的文献求助10
20秒前
wuyan204完成签到 ,获得积分10
21秒前
windcreator完成签到,获得积分10
21秒前
redondo5完成签到,获得积分0
21秒前
wangrswjx完成签到 ,获得积分10
21秒前
科研通AI5应助su采纳,获得10
21秒前
24秒前
26秒前
小二郎应助嘻嘻采纳,获得10
26秒前
yun完成签到 ,获得积分10
27秒前
27秒前
29秒前
健忘曼冬发布了新的文献求助10
29秒前
redondo完成签到,获得积分10
29秒前
momo完成签到,获得积分10
30秒前
希望天下0贩的0应助meng采纳,获得10
31秒前
龙歪歪发布了新的文献求助10
32秒前
32秒前
暮城完成签到,获得积分10
32秒前
33秒前
云墨完成签到 ,获得积分10
33秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849