Identification of missing higher-order interactions in complex networks

鉴定(生物学) 计算机科学 订单(交换) 统计物理学 物理 业务 生物 财务 植物
作者
Chengjun Zhang,Wang Suxun,Wenbin Yu,Peijun Zhao,Yadang Chen,Jiarui Gu,Zhengju Ren,Jin Liu
出处
期刊:Journal of Complex Networks [Oxford University Press]
卷期号:12 (4)
标识
DOI:10.1093/comnet/cnae031
摘要

Abstract Link prediction has always played a crucial role in unveiling the structural patterns and evolutionary rules of networks. However, as research on complex networks has progressed, the limitations of solely exploring low-order structures have become increasingly apparent. The introduction of high-order organizational theories has not only enriched the conceptual framework of network dynamics but also opened new avenues for investigating the mechanisms of network evolution and adaptation. The complexity and richness of high-order networks pose challenges for link prediction. This study introduces two novel approaches to forecast links in higher-order networks. The first one is to predict links directly in higher-order networks (LPHN), which directly predicts missing links within the higher-order network based on its structure; the other one is to predict higher-order links via link prediction in low-order networks(PHLN), which starts by predicting absent links in a low-order network. Subsequently, the inferred low-order structure is employed as a foundation to extrapolate and reconstruct the predicted higher-order network. Upon comparing the higher-order networks generated by both LPHN and PHLN with the original higher-order networks constructed directly from low-order networks, we discovered that the higher-order networks produced by PHLN exhibit greater accuracy and exhibit a more similar scale of giant components to the original higher-order network. Consequently, the PHLN demonstrates enhanced precision in forecasting the structure of higher-order networks while preserving networks’ structural integrity. Moreover, PHLN exhibits superior performance in the context of large-scale and sparsely connected networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lw发布了新的文献求助30
刚刚
丘比特应助沈ff采纳,获得10
1秒前
过氧化氢发布了新的文献求助10
2秒前
一颗树发布了新的文献求助10
2秒前
了了发布了新的文献求助10
3秒前
Transition发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
泡泡老爷车完成签到,获得积分10
5秒前
王健路完成签到,获得积分10
6秒前
隐形曼青应助xymy采纳,获得10
6秒前
赘婿应助wodel采纳,获得10
7秒前
橙子完成签到,获得积分20
7秒前
7秒前
lw完成签到,获得积分10
8秒前
笑点低如霜完成签到,获得积分10
8秒前
9秒前
10秒前
北岭雪兮发布了新的文献求助10
10秒前
10秒前
Jaylene发布了新的文献求助10
11秒前
11秒前
Connie发布了新的文献求助10
11秒前
悦铭完成签到,获得积分10
11秒前
12秒前
细腻铃铛完成签到,获得积分10
12秒前
12秒前
GS11发布了新的文献求助10
13秒前
最初的梦想完成签到,获得积分10
13秒前
搜集达人应助hh采纳,获得10
15秒前
了了完成签到,获得积分10
15秒前
15秒前
i7发布了新的文献求助10
17秒前
17秒前
Rondab应助潇洒如凡采纳,获得10
17秒前
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545