Identification of missing higher-order interactions in complex networks

鉴定(生物学) 计算机科学 订单(交换) 统计物理学 物理 业务 生物 财务 植物
作者
Chengjun Zhang,Wang Suxun,Wenbin Yu,Peijun Zhao,Yadang Chen,Jiafeng Gu,Zhengju Ren,Бо Лю
出处
期刊:Journal of Complex Networks [Oxford University Press]
卷期号:12 (4)
标识
DOI:10.1093/comnet/cnae031
摘要

Abstract Link prediction has always played a crucial role in unveiling the structural patterns and evolutionary rules of networks. However, as research on complex networks has progressed, the limitations of solely exploring low-order structures have become increasingly apparent. The introduction of high-order organizational theories has not only enriched the conceptual framework of network dynamics but also opened new avenues for investigating the mechanisms of network evolution and adaptation. The complexity and richness of high-order networks pose challenges for link prediction. This study introduces two novel approaches to forecast links in higher-order networks. The first one is to predict links directly in higher-order networks (LPHN), which directly predicts missing links within the higher-order network based on its structure; the other one is to predict higher-order links via link prediction in low-order networks(PHLN), which starts by predicting absent links in a low-order network. Subsequently, the inferred low-order structure is employed as a foundation to extrapolate and reconstruct the predicted higher-order network. Upon comparing the higher-order networks generated by both LPHN and PHLN with the original higher-order networks constructed directly from low-order networks, we discovered that the higher-order networks produced by PHLN exhibit greater accuracy and exhibit a more similar scale of giant components to the original higher-order network. Consequently, the PHLN demonstrates enhanced precision in forecasting the structure of higher-order networks while preserving networks’ structural integrity. Moreover, PHLN exhibits superior performance in the context of large-scale and sparsely connected networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUN发布了新的文献求助10
1秒前
Character发布了新的文献求助10
1秒前
霁昕完成签到 ,获得积分10
2秒前
nbnmbm完成签到,获得积分10
3秒前
森森完成签到 ,获得积分10
3秒前
5秒前
王水苗关注了科研通微信公众号
6秒前
车小帅发布了新的文献求助10
8秒前
8秒前
9秒前
桐桐应助甜美的成败采纳,获得10
10秒前
xpp完成签到 ,获得积分10
11秒前
迅速的念芹完成签到 ,获得积分10
11秒前
yang完成签到 ,获得积分10
14秒前
zsl发布了新的文献求助10
15秒前
传统的大白完成签到,获得积分10
15秒前
朴素访琴完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助yumieer采纳,获得10
17秒前
18秒前
时光倒流的鱼完成签到,获得积分10
19秒前
19秒前
进击的研狗完成签到 ,获得积分10
19秒前
sun发布了新的文献求助20
20秒前
20秒前
小章鱼完成签到,获得积分10
21秒前
21秒前
搜集达人应助Fjj采纳,获得10
21秒前
23秒前
zsl完成签到,获得积分10
23秒前
xlb发布了新的文献求助10
25秒前
Siqi_He完成签到,获得积分10
26秒前
26秒前
王水苗发布了新的文献求助10
28秒前
28秒前
DullElm完成签到,获得积分10
29秒前
哈尔行者完成签到,获得积分10
29秒前
李健的小迷弟应助妞妞采纳,获得10
30秒前
32秒前
32秒前
yang发布了新的文献求助10
33秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165214
求助须知:如何正确求助?哪些是违规求助? 2816237
关于积分的说明 7911970
捐赠科研通 2475937
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632155
版权声明 602388