Feature Selection as Deep Sequential Generative Learning

特征选择 人工智能 计算机科学 特征向量 特征(语言学) 模式识别(心理学) 特征学习 判别式 嵌入 机器学习 语言学 哲学
作者
Wangyang Ying,Dongjie Wang,Haifeng Chen,Yanjie Fu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (9): 1-21
标识
DOI:10.1145/3687485
摘要

Feature selection aims to identify the most pattern-discriminative feature subset. In prior literature, filter (e.g., backward elimination) and embedded (e.g., LASSO) methods have hyperparameters (e.g., top- k , score thresholding) and tie to specific models, thus, hard to generalize; wrapper methods search a feature subset in a huge discrete space and is computationally costly. To transform the way of feature selection, we regard a selected feature subset as a selection decision token sequence and reformulate feature selection as a deep sequential generative learning task that distills feature knowledge and generates decision sequences. Our method includes three steps: (1) We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses. Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores. (2) We leverage the trained feature subset utility evaluator as a gradient provider to guide the identification of the optimal feature subset embedding; (3) We decode the optimal feature subset embedding to autoregressively generate the best feature selection decision sequence with autostop. Extensive experimental results show this generative perspective is effective and generic, without large discrete search space and expert-specific hyperparameters. The code is available at http://tinyurl.com/FSDSGL .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuwu关注了科研通微信公众号
1秒前
开朗艳一发布了新的文献求助10
2秒前
2秒前
tesla发布了新的文献求助10
3秒前
3秒前
开朗向真发布了新的文献求助10
3秒前
眼睛大雨筠应助桃花嫣然采纳,获得20
5秒前
MULU完成签到 ,获得积分10
5秒前
无限的幻灵完成签到,获得积分10
5秒前
5秒前
6秒前
华仔应助academic_rookie采纳,获得10
6秒前
自然1111发布了新的文献求助30
6秒前
强健的蚂蚁完成签到,获得积分10
6秒前
6秒前
galvin完成签到,获得积分10
7秒前
7秒前
zhouzhou完成签到,获得积分10
8秒前
8秒前
星海完成签到,获得积分10
8秒前
10秒前
南枳完成签到,获得积分10
10秒前
hzh发布了新的文献求助10
10秒前
11秒前
12秒前
krf2完成签到,获得积分10
12秒前
南枳发布了新的文献求助10
13秒前
星星之火发布了新的文献求助10
13秒前
和谐的映梦完成签到,获得积分10
13秒前
欢呼宛秋完成签到 ,获得积分10
15秒前
董H完成签到,获得积分10
15秒前
劳永杰发布了新的文献求助10
16秒前
16秒前
香蕉觅云应助赵丽亚采纳,获得10
16秒前
May应助RenHP采纳,获得20
16秒前
量子星尘发布了新的文献求助30
17秒前
健忘荧发布了新的文献求助150
17秒前
17秒前
酷波er应助和谐的追命采纳,获得10
17秒前
大橘爱睡觉完成签到,获得积分10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186