Investigation of the Effect of Confinement on Intact Wombeyan Marble Using Continuum Grain-Based Model (CGBM)

材料科学 计算机科学 地质学 物理
作者
Poralla Venkata Satheesh,Deepanshu Shirole,Sankhaneel Sinha
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium
标识
DOI:10.56952/arma-2024-0310
摘要

ABSTRACT: The progressive failure of brittle rock under compression involves micro-crack initiation, accumulation, and propagation. With advances in numerical modeling, it is now possible to examine complex micro-mechanical processes (e.g., strain heterogeneity, force chains, micro-level damage processes) evolving in the rocks that are difficult to investigate under conventional laboratory settings. While several studies have investigated the micromechanical aspects of brittle rock damage processes under unconfined and confined conditions in discontinuum, understanding them in a continuum media remains limited. Accordingly, this study utilizes the CGBM (representing rock volume as aggregates of polygonal blocks separated by joint elements) technique to simulate the brittle rock failure process of intact Wombeyan marble under varying confinement levels, building upon previous work by Li and Bahrani (2021) in RS2. Specifically, micro-parameters of the intact Wombeyan marble were modified to capture the experimentally informed stress-strain behaviour, and the evolution of damage-induced non-linearity in such curves. The numerical results demonstrate CGBM's ability to capture critical characteristics of brittle rocks, including non-linear strength envelope and change in the failure modes with increasing confinement. Additional investigation on the influence of joint normal stiffness and tensile strength parameters on the simulated micromechanics was completed through strain-field heterogeneity and volumetric strain analysis. A complete understanding of the parametric influences is necessary for accurately predicting rock mechanical response and failure mechanisms, and for improving the capabilities of such models. 1. INTRODUCTION The heterogeneous nature of the intact rock at the grain-scale governs its emergent macroscopic behavior (Hazzard and Young, 2000; Mahabadi et al., 2012; Potyondy et al., 1996). Grain size, grain boundaries, grain shape, mineral constituents, and micro-flaws present in the rock microstructure introduce stress heterogeneity in rock, which primarily drives rock damage and deformation processes (Fabjan et al., 2015; Lan et al., 2010; Potyondy, 2010; Shirole et al., 2020; Sinha and Walton, 2020; Wang and Cai, 2019). However, investigations that can illuminate such complex processes (i.e., heterogeneity, damage, inelasticity, etc.) evolving at the grain-scales, in general, are difficult to conduct via conventional laboratory-based experimental measures (Shirole et al., 2019, 2020, 2019b). To this end, numerical models that allow the explicit representation of rock microstructure as an assembly of discrete particles or blocks (Discrete Element Methods (DEMs)) have been found to be advantageous (Ghazvinian et al., 2014; Hamediazad and Bahrani, 2022; Peng et al., 2018). The Bonded Particle Model (BPM) and Grain-Based Model (GBM) are two primary DEM techniques utilized for analyzing the rock damage process. In BPM, the internal microstructure of rock is represented as an assemblage of circular and sphere-shaped grains via the discontinuum numerical tool Particle Flow Code (PFC2D and PFC3D) (Potyondy, 2002; Potyondy and Cundall, 2004; Potyondy et al., 1996). However, BPM suffers inherent limitations, such as its tendency to produce high intrinsic porosity in simulated rocks due to the spherical/circular shape of the particles (Gao et al., 2016). Therefore, it becomes challenging to model low-porosity rocks using BPM. On the other hand, GBM represents the internal grain structure of rocks as an assembly of polygons (Lan et al., 2010) or Trigons (Gao et al., 2016). A key issue with the use of Trigons (triangular grains) is its predisposition towards shear fracturing due to the availability of linear failure pathways (Ghazvinian et al., 2014; Sinha & Walton, 2020). GBM with polygonal grains provides a more realistic representation of the geometric features of rocks, as polygons can closely mimic irregular grain shapes found in natural rock formations. Additionally, GBM addresses particle interlocking issues more effectively compared to BPM. By utilizing Voronoi tessellation, GBM accounts for the irregular and non-uniform arrangement of grains within rocks, thereby capturing the complexities of rock microstructures more accurately (Ghazvinian et al., 2014; Sinha and Walton, 2018; Sinha and Walton, 2020).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu完成签到,获得积分10
刚刚
666JACS发布了新的文献求助10
1秒前
Cactus应助lss采纳,获得10
1秒前
打打应助伶俐一曲采纳,获得30
1秒前
WANGJD完成签到,获得积分10
1秒前
1秒前
刚好五个字完成签到,获得积分10
2秒前
英姑应助Charon采纳,获得10
2秒前
HH发布了新的文献求助10
2秒前
小王发布了新的文献求助10
2秒前
randomname完成签到,获得积分10
2秒前
3秒前
烟花应助波波采纳,获得10
3秒前
3秒前
吴帆发布了新的文献求助10
3秒前
露露露发布了新的文献求助10
3秒前
tlc_191026发布了新的文献求助10
3秒前
能干砖家完成签到,获得积分10
3秒前
腼腆的小熊猫完成签到 ,获得积分10
4秒前
后夜发布了新的文献求助10
4秒前
4秒前
4秒前
科目三应助咔咔采纳,获得10
4秒前
充电宝应助WANGJD采纳,获得10
5秒前
5秒前
科研通AI6应助jyyg采纳,获得30
5秒前
pcr163应助Angie采纳,获得50
6秒前
6秒前
小猴发布了新的文献求助10
6秒前
DRHSK发布了新的文献求助20
7秒前
Spinnin完成签到,获得积分10
8秒前
国足预备员完成签到 ,获得积分10
8秒前
ding应助piers采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
张德洁完成签到,获得积分10
9秒前
昭玥完成签到,获得积分10
10秒前
10秒前
10秒前
顾矜应助咸鱼采纳,获得10
10秒前
领导范儿应助小王采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475