Synergetic Functionalization of the ZnS@ASCs Biocomposite: For Enhanced Electrochemical Performance of Redox Flow Batteries and Supercapacitors

超级电容器 材料科学 氧化还原 储能 电极 流动电池 电化学 法拉第效率 背景(考古学) 假电容 复合数 化学工程 电容 纳米技术 复合材料 化学 冶金 电解质 物理化学 工程类 古生物学 功率(物理) 物理 量子力学 生物
作者
Gireeshkumar Basavaraj Chavati,Sharath Kumar Basavaraju,Arthoba Nayaka Yanjerappa,H. B. Muralidhara,Krishna Venkatesh,K. Gopalakrishna
出处
期刊:ACS applied electronic materials [American Chemical Society]
被引量:2
标识
DOI:10.1021/acsaelm.4c00943
摘要

Redox flow batteries and supercapacitors are attracting significant attention worldwide because of their roles in grid-level energy storage and smaller-scale applications. Both of these technologies play unique roles in the operation of electrochemical energy storage devices. An investigation of ZnS@ASCs composite materials shows their excellent electrochemical performance. The cost-effective, efficient, and straightforward synthesis of ZnS and their composites with bioactivated carbon was performed using a hydrothermal technique. In the context of redox flow batteries (RFBs), the ZnS@ASCs composite material was utilized as a positive electrode with an area of 132 cm2. It acted as an electrocatalyst for both vanadium redox flow batteries (VRFBs) and iron redox flow batteries (IRFBs). The stability of the ZnS@ASC-treated graphite felt electrode was demonstrated up to 200 cycles for VRFBs and 25 cycles for IRFBs, resulting in satisfactory Coulombic efficiencies (CEs) of 86.66% and 89.26% for VRFB and IRFB, respectively. Furthermore, the ZnS@ASCs composite material is applied as a coating onto a Toray carbon sheet and is utilized as the active electrode for supercapacitor applications. This working electrode exhibited a significantly high specific capacitance of 1070.80 F/g at 4 mA/g in a sulfuric acid (H2SO4) solution. The electrode maintained impressive CEs of 97.41% and 95.87% of its initial performance after undergoing 3500 charge–discharge cycles. Notably, the ZnS@ASCs composite material has been shown to be an efficient and exceptional electrochemically active material for various energy storage devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ruilong采纳,获得10
1秒前
1秒前
bbczj发布了新的文献求助10
2秒前
2秒前
2秒前
燕子发布了新的文献求助10
2秒前
风之子发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
乐正广山完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
6秒前
沐阳d发布了新的文献求助10
6秒前
7秒前
7秒前
小龙虾应助乐正广山采纳,获得10
7秒前
cxy发布了新的文献求助10
7秒前
111发布了新的文献求助10
7秒前
红红完成签到,获得积分10
7秒前
149发布了新的文献求助10
7秒前
道交法发布了新的文献求助10
7秒前
二蛋发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
氟西汀完成签到,获得积分20
9秒前
kilig应助云杉采纳,获得10
9秒前
10秒前
10秒前
11秒前
周周发布了新的文献求助10
12秒前
Stronger发布了新的文献求助10
12秒前
天天发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524656
求助须知:如何正确求助?哪些是违规求助? 3105505
关于积分的说明 9274438
捐赠科研通 2802572
什么是DOI,文献DOI怎么找? 1538099
邀请新用户注册赠送积分活动 716017
科研通“疑难数据库(出版商)”最低求助积分说明 709140