A novel palladium decorated graphdiyne regulating d band center enhanced the ability of square meter scale and coal chemical wastewater for efficient hydrogen production
The large amount of organic wastewater generated by the coal chemical industry requires multiple processes to remove harmful substances, which is costly. Based on this, palladium-modified GDY (Pd-GDY) was prepared for the first time, using acetylene gas generated from carbide slag as a precursor. And grow CdS on its surface to form Pd-GDY/CdS heterostructure material. The photocatalytic performance in coal chemical wastewater can reach 7.35 μmol·g−1·h−1. Meanwhile, in the industrial hydrogen production experiment on a square meter scale, the hydrogen production rate reached 3.42 mmol·h−1. Density functional theory (DFT) calculations indicate that the excellent hydrogen evolution activity is attributed to the regulation of the d band center by Pd-GDY. More antibonding energy bands are below the Fermi level, filled with electrons, reducing bond stability and adsorption strength, resulting in a decrease in hydrogen adsorption free energy. Overall, this work provides new insights into the synthesis of novel graphdiyne and its application in wastewater and industrial hydrogen production based on regulating d band center in heterogeneous catalytic systems.