Beyond clouds: Seamless flood mapping using Harmonized Landsat and Sentinel-2 time series imagery and water occurrence data

大洪水 遥感 云计算 洪水(心理学) 环境科学 土地覆盖 云量 时间序列 系列(地层学) 计算机科学 气象学 水文学(农业) 地质学 地理 土地利用 机器学习 古生物学 考古 心理学 土木工程 岩土工程 工程类 心理治疗师 操作系统
作者
Zhiwei Li,Shao-Fen Xu,Qihao Weng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:216: 185-199 被引量:1
标识
DOI:10.1016/j.isprsjprs.2024.07.022
摘要

Floods are among the most devastating natural disasters, posing significant risks to life, property, and infrastructure globally. Earth observation satellites provide data for continuous and extensive flood monitoring, yet limitations exist in the spatial completeness of monitoring using optical images due to cloud cover. Recent studies have developed gap-filling methods for reconstructing cloud-covered areas in water maps. However, these methods are not tailored for and validated in cloudy and rainy flooding scenarios with rapid water extent changes and limited clear-sky observations, leaving room for further improvements. This study investigated and developed a novel reconstruction method for time series flood extent mapping, supporting spatially seamless monitoring of flood extents. The proposed method first identified surface water from time series images using a fine-tuned large foundation model. Then, the cloud-covered areas in the water maps were reconstructed, adhering to the introduced submaximal stability assumption, on the basis of the prior water occurrence data in the Global Surface Water dataset. The reconstructed time series water maps were refined through spatiotemporal Markov random field modeling for the final delineation of flooding areas. The effectiveness of the proposed method was evaluated with Harmonized Landsat and Sentinel-2 datasets under varying cloud cover conditions, enabling seamless flood mapping at 2–3-day frequency and 30 m resolution. Experiments at four global sites confirmed the superiority of the proposed method. It achieved higher reconstruction accuracy with average F1-scores of 0.931 during floods and 0.903 before/after floods, outperforming the typical gap-filling method with average F1-scores of 0.871 and 0.772, respectively. Additionally, the maximum flood extent maps and flood duration maps, which were composed on the basis of the reconstructed water maps, were more accurate than those using the original cloud-contaminated water maps. The benefits of synthetic aperture radar images (e.g., Sentinel-1) for enhancing flood mapping under cloud cover conditions were also discussed. The method proposed in this paper provided an effective way for flood monitoring in cloudy and rainy scenarios, supporting emergency response and disaster management. The code and datasets used in this study have been made available online (https://github.com/dr-lizhiwei/SeamlessFloodMapper).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助翁雁丝采纳,获得10
刚刚
NexusExplorer应助小羊肖恩采纳,获得30
1秒前
我是魔王完成签到,获得积分10
1秒前
Riggle G完成签到,获得积分10
1秒前
dwz完成签到,获得积分10
1秒前
吕小布完成签到,获得积分10
1秒前
KOKo发布了新的文献求助10
2秒前
2秒前
Ava应助郁香薇采纳,获得10
2秒前
张真狗完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助nn采纳,获得10
2秒前
tulips发布了新的文献求助10
3秒前
KY Mr.WANG发布了新的文献求助10
3秒前
西西完成签到,获得积分10
3秒前
余哈哈完成签到,获得积分10
3秒前
丘山杉完成签到,获得积分10
3秒前
悠咪发布了新的文献求助10
3秒前
1122完成签到,获得积分10
4秒前
4秒前
不无聊的从梦完成签到,获得积分10
4秒前
hugo3651完成签到,获得积分20
4秒前
4秒前
4秒前
罗沫沫完成签到,获得积分10
5秒前
5秒前
5秒前
撒西不理完成签到,获得积分10
5秒前
73Jennie123完成签到,获得积分10
5秒前
笑嘻嘻完成签到,获得积分10
6秒前
可爱的函函应助冬无青山采纳,获得10
6秒前
兜兜窦完成签到,获得积分10
6秒前
7秒前
快乐水完成签到,获得积分10
7秒前
8秒前
爱听歌的亦玉完成签到,获得积分20
8秒前
hugo3651发布了新的文献求助10
8秒前
ZhangZhiHao完成签到,获得积分10
8秒前
YYY222发布了新的文献求助10
8秒前
tinatian270完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510997
求助须知:如何正确求助?哪些是违规求助? 3093756
关于积分的说明 9218930
捐赠科研通 2788213
什么是DOI,文献DOI怎么找? 1530059
邀请新用户注册赠送积分活动 710736
科研通“疑难数据库(出版商)”最低求助积分说明 706329