Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches

Lasso(编程语言) 无线电技术 交叉验证 校准 超参数 恶性肿瘤 试验装置 随机森林 人工智能 医学 机器学习 肺癌筛查 超参数优化 肺癌 计算机科学 支持向量机 统计 数学 病理 万维网
作者
Matthew T. Warkentin,Hamad Al‐Sawaihey,Stephen Lam,Geoffrey Liu,Brenda Diergaarde,Jian‐Min Yuan,David O. Wilson,Martin C. Tammemägi,Sukhinder Atkar-Khattra,Benjamin Grant,Yonathan Brhane,Elham Khodayari Moez,Kieran R. Campbell,Rayjean J. Hung
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2022.10.03.22280659
摘要

Abstract Purpose Screening with low-dose computed tomography can reduce lung cancer-related mortality. However, most screen-detected pulmonary abnormalities do not develop into cancer and it remains challenging to identify high-risk nodules among those with indeterminate appearance. We aim to develop and validate prediction models to discriminate between benign and malignant pulmonary lesions based on radiological features. Methods Using four international lung cancer screening studies, we extracted 2,060 radiomic features for each of 16,797 nodules among 6,865 participants. After filtering out redundant and low-quality radiomic features, 642 radiomic and 9 epidemiologic features remained for model development. We used cross-validation and grid search to assess three machine learning models (XGBoost, Random Forest, LASSO) for their ability to accurately predict risk of malignancy for pulmonary nodules. We fit the top-performing ML model in the full training set. We report model performance based on the area under the curve (AUC) and calibration metrics in the held-out test set. Results The ML models that yielded the best predictive performance in cross-validation were XGBoost and LASSO, and among these models, LASSO had superior model calibration, which we considered to be the optimal model. We fit the final LASSO model based on the optimized hyperparameter from cross-validation. Our radiomics model was both well-calibrated and had a test-set AUC of 0.930 (95% CI: 0.901-0.957) and out-performed the established Brock model (AUC=0.868, 95% CI: 0.847-0.888) for nodule assessment. Conclusion We developed highly-accurate machine learning models based on radiomic and epidemiologic features from four international lung cancer screening studies that may be suitable for assessing suspicious, but indeterminate, screen-detected pulmonary nodules for risk of malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋刀鱼发布了新的文献求助10
刚刚
1秒前
微光熠发布了新的文献求助10
1秒前
哪吒之魔童降世完成签到,获得积分10
2秒前
seven发布了新的文献求助10
2秒前
2秒前
长言发布了新的文献求助10
2秒前
科研通AI6应助黎星采纳,获得10
2秒前
树子发布了新的文献求助10
2秒前
muzi完成签到,获得积分10
3秒前
lulululi发布了新的文献求助10
3秒前
明理问寒发布了新的文献求助10
3秒前
辛菜头完成签到,获得积分10
3秒前
活力盼晴完成签到,获得积分10
3秒前
汉堡包应助不怕困难采纳,获得10
4秒前
开放巧荷关注了科研通微信公众号
4秒前
4秒前
欧小仙发布了新的文献求助10
5秒前
5秒前
5秒前
鱼鱼发布了新的文献求助10
5秒前
5秒前
HAHAHA完成签到,获得积分10
6秒前
11111发布了新的文献求助10
6秒前
冷静的高烽完成签到,获得积分10
6秒前
6秒前
葱饼完成签到 ,获得积分10
6秒前
凯凯发布了新的文献求助10
7秒前
英姑应助长言采纳,获得10
7秒前
wendy完成签到,获得积分10
8秒前
8秒前
迷人书蝶发布了新的文献求助10
8秒前
8秒前
8秒前
aka发布了新的文献求助20
9秒前
feng完成签到,获得积分10
10秒前
yanj520925发布了新的文献求助10
10秒前
10秒前
深情安青应助巫雍采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616