Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches

Lasso(编程语言) 无线电技术 交叉验证 校准 超参数 恶性肿瘤 试验装置 随机森林 人工智能 医学 机器学习 肺癌筛查 超参数优化 肺癌 计算机科学 支持向量机 统计 数学 病理 万维网
作者
Matthew T. Warkentin,Hamad Al‐Sawaihey,Stephen Lam,Geoffrey Liu,Brenda Diergaarde,Jian‐Min Yuan,David O. Wilson,Martin C. Tammemägi,Sukhinder Atkar-Khattra,Benjamin Grant,Yonathan Brhane,Elham Khodayari Moez,Kieran R. Campbell,Rayjean J. Hung
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2022.10.03.22280659
摘要

Abstract Purpose Screening with low-dose computed tomography can reduce lung cancer-related mortality. However, most screen-detected pulmonary abnormalities do not develop into cancer and it remains challenging to identify high-risk nodules among those with indeterminate appearance. We aim to develop and validate prediction models to discriminate between benign and malignant pulmonary lesions based on radiological features. Methods Using four international lung cancer screening studies, we extracted 2,060 radiomic features for each of 16,797 nodules among 6,865 participants. After filtering out redundant and low-quality radiomic features, 642 radiomic and 9 epidemiologic features remained for model development. We used cross-validation and grid search to assess three machine learning models (XGBoost, Random Forest, LASSO) for their ability to accurately predict risk of malignancy for pulmonary nodules. We fit the top-performing ML model in the full training set. We report model performance based on the area under the curve (AUC) and calibration metrics in the held-out test set. Results The ML models that yielded the best predictive performance in cross-validation were XGBoost and LASSO, and among these models, LASSO had superior model calibration, which we considered to be the optimal model. We fit the final LASSO model based on the optimized hyperparameter from cross-validation. Our radiomics model was both well-calibrated and had a test-set AUC of 0.930 (95% CI: 0.901-0.957) and out-performed the established Brock model (AUC=0.868, 95% CI: 0.847-0.888) for nodule assessment. Conclusion We developed highly-accurate machine learning models based on radiomic and epidemiologic features from four international lung cancer screening studies that may be suitable for assessing suspicious, but indeterminate, screen-detected pulmonary nodules for risk of malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
熊一只完成签到,获得积分10
1秒前
杨欣发布了新的文献求助10
1秒前
杨欣发布了新的文献求助10
1秒前
杨欣发布了新的文献求助10
1秒前
1秒前
2秒前
zyh给zyh的求助进行了留言
3秒前
underoos完成签到,获得积分10
3秒前
Victor66685应助111采纳,获得30
5秒前
5秒前
cyy完成签到,获得积分10
6秒前
6秒前
underoos发布了新的文献求助10
7秒前
张不张发布了新的文献求助10
7秒前
7秒前
alian发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
she发布了新的文献求助10
7秒前
拼搏的韭菜完成签到,获得积分10
8秒前
优美巨人发布了新的文献求助10
8秒前
Akim应助cc采纳,获得10
9秒前
9秒前
星辰大海应助清欢采纳,获得10
10秒前
斯文败类应助小冯采纳,获得10
10秒前
细心蚂蚁发布了新的文献求助10
10秒前
SunOSun发布了新的文献求助30
11秒前
学术laji发布了新的文献求助10
11秒前
11秒前
13秒前
科研通AI5应助xiaoyu123采纳,获得10
13秒前
13秒前
情怀应助awwww采纳,获得10
14秒前
neckerzhu发布了新的文献求助10
14秒前
紧张的惜寒完成签到,获得积分10
16秒前
16秒前
16秒前
干涸的脑瓜完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934228
求助须知:如何正确求助?哪些是违规求助? 4202186
关于积分的说明 13056265
捐赠科研通 3976412
什么是DOI,文献DOI怎么找? 2178969
邀请新用户注册赠送积分活动 1195288
关于科研通互助平台的介绍 1106655