已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches

Lasso(编程语言) 无线电技术 交叉验证 校准 超参数 恶性肿瘤 试验装置 随机森林 人工智能 医学 机器学习 肺癌筛查 超参数优化 肺癌 计算机科学 支持向量机 统计 数学 病理 万维网
作者
Matthew T. Warkentin,Hamad Al‐Sawaihey,Stephen Lam,Geoffrey Liu,Brenda Diergaarde,Jian‐Min Yuan,David O. Wilson,Martin C. Tammemägi,Sukhinder Atkar-Khattra,Benjamin Grant,Yonathan Brhane,Elham Khodayari Moez,Kieran R. Campbell,Rayjean J. Hung
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2022.10.03.22280659
摘要

Abstract Purpose Screening with low-dose computed tomography can reduce lung cancer-related mortality. However, most screen-detected pulmonary abnormalities do not develop into cancer and it remains challenging to identify high-risk nodules among those with indeterminate appearance. We aim to develop and validate prediction models to discriminate between benign and malignant pulmonary lesions based on radiological features. Methods Using four international lung cancer screening studies, we extracted 2,060 radiomic features for each of 16,797 nodules among 6,865 participants. After filtering out redundant and low-quality radiomic features, 642 radiomic and 9 epidemiologic features remained for model development. We used cross-validation and grid search to assess three machine learning models (XGBoost, Random Forest, LASSO) for their ability to accurately predict risk of malignancy for pulmonary nodules. We fit the top-performing ML model in the full training set. We report model performance based on the area under the curve (AUC) and calibration metrics in the held-out test set. Results The ML models that yielded the best predictive performance in cross-validation were XGBoost and LASSO, and among these models, LASSO had superior model calibration, which we considered to be the optimal model. We fit the final LASSO model based on the optimized hyperparameter from cross-validation. Our radiomics model was both well-calibrated and had a test-set AUC of 0.930 (95% CI: 0.901-0.957) and out-performed the established Brock model (AUC=0.868, 95% CI: 0.847-0.888) for nodule assessment. Conclusion We developed highly-accurate machine learning models based on radiomic and epidemiologic features from four international lung cancer screening studies that may be suitable for assessing suspicious, but indeterminate, screen-detected pulmonary nodules for risk of malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peterlee发布了新的文献求助20
2秒前
汉堡包应助freshman采纳,获得10
3秒前
4秒前
5秒前
粗心的画板完成签到,获得积分20
7秒前
7秒前
张匀继关注了科研通微信公众号
9秒前
英俊的铭应助一个西藏采纳,获得10
10秒前
[刘小婷]完成签到,获得积分10
11秒前
Hello应助旷意采纳,获得30
12秒前
万能图书馆应助司佳雨采纳,获得10
12秒前
DACT发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
好结局完成签到,获得积分10
14秒前
14秒前
17秒前
17秒前
LLLUO发布了新的文献求助10
17秒前
18秒前
Jackpu发布了新的文献求助10
18秒前
19秒前
33发布了新的文献求助10
19秒前
20秒前
深情安青应助纯真小伙采纳,获得10
20秒前
风清扬发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
peterlee完成签到,获得积分10
23秒前
小饶发布了新的文献求助10
24秒前
24秒前
sevenLIN发布了新的文献求助10
25秒前
freshman发布了新的文献求助10
25秒前
旷意发布了新的文献求助30
25秒前
NieNie发布了新的文献求助30
26秒前
美丽女人完成签到 ,获得积分10
27秒前
wop111发布了新的文献求助10
28秒前
隐形曼青应助逸兴遄飞采纳,获得30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279