Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches

Lasso(编程语言) 无线电技术 交叉验证 校准 超参数 恶性肿瘤 试验装置 随机森林 人工智能 医学 机器学习 肺癌筛查 超参数优化 肺癌 计算机科学 支持向量机 统计 数学 病理 万维网
作者
Matthew T. Warkentin,Hamad Al‐Sawaihey,Stephen Lam,Geoffrey Liu,Brenda Diergaarde,Jian‐Min Yuan,David O. Wilson,Martin C. Tammemägi,Sukhinder Atkar-Khattra,Benjamin Grant,Yonathan Brhane,Elham Khodayari Moez,Kieran R. Campbell,Rayjean J. Hung
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2022.10.03.22280659
摘要

Abstract Purpose Screening with low-dose computed tomography can reduce lung cancer-related mortality. However, most screen-detected pulmonary abnormalities do not develop into cancer and it remains challenging to identify high-risk nodules among those with indeterminate appearance. We aim to develop and validate prediction models to discriminate between benign and malignant pulmonary lesions based on radiological features. Methods Using four international lung cancer screening studies, we extracted 2,060 radiomic features for each of 16,797 nodules among 6,865 participants. After filtering out redundant and low-quality radiomic features, 642 radiomic and 9 epidemiologic features remained for model development. We used cross-validation and grid search to assess three machine learning models (XGBoost, Random Forest, LASSO) for their ability to accurately predict risk of malignancy for pulmonary nodules. We fit the top-performing ML model in the full training set. We report model performance based on the area under the curve (AUC) and calibration metrics in the held-out test set. Results The ML models that yielded the best predictive performance in cross-validation were XGBoost and LASSO, and among these models, LASSO had superior model calibration, which we considered to be the optimal model. We fit the final LASSO model based on the optimized hyperparameter from cross-validation. Our radiomics model was both well-calibrated and had a test-set AUC of 0.930 (95% CI: 0.901-0.957) and out-performed the established Brock model (AUC=0.868, 95% CI: 0.847-0.888) for nodule assessment. Conclusion We developed highly-accurate machine learning models based on radiomic and epidemiologic features from four international lung cancer screening studies that may be suitable for assessing suspicious, but indeterminate, screen-detected pulmonary nodules for risk of malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帝释天I发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
wyq完成签到,获得积分10
1秒前
东方傲儿发布了新的文献求助10
1秒前
1秒前
2秒前
仁爱的觅夏完成签到,获得积分10
2秒前
BEMJ发布了新的文献求助30
2秒前
zmc_297完成签到,获得积分10
2秒前
裤里发布了新的文献求助10
2秒前
fjhsg25发布了新的文献求助10
2秒前
隐形曼青应助LXL采纳,获得10
3秒前
4秒前
5秒前
6秒前
深情安青应助cccc采纳,获得10
6秒前
6秒前
细心擎呢发布了新的文献求助10
7秒前
8秒前
小彭仔完成签到,获得积分10
8秒前
罗咩咩发布了新的文献求助10
10秒前
丘比特应助ninomi采纳,获得10
10秒前
10秒前
蓝天应助聪慧的醉波采纳,获得10
10秒前
11秒前
彭于晏应助霸气的柠檬采纳,获得10
12秒前
大模型应助吴龙采纳,获得10
12秒前
茶米发布了新的文献求助10
13秒前
13秒前
单薄的西装完成签到,获得积分10
14秒前
NexusExplorer应助Wjp采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
shadow完成签到,获得积分10
15秒前
balalal发布了新的文献求助10
15秒前
CodeCraft应助sghsh采纳,获得10
16秒前
CodeCraft应助zd200572采纳,获得10
16秒前
Hello应助Dylan采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133