Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches

Lasso(编程语言) 无线电技术 交叉验证 校准 超参数 恶性肿瘤 试验装置 随机森林 人工智能 医学 机器学习 肺癌筛查 超参数优化 肺癌 计算机科学 支持向量机 统计 数学 病理 万维网
作者
Matthew T. Warkentin,Hamad Al‐Sawaihey,Stephen Lam,Geoffrey Liu,Brenda Diergaarde,Jian‐Min Yuan,David O. Wilson,Martin C. Tammemägi,Sukhinder Atkar-Khattra,Benjamin Grant,Yonathan Brhane,Elham Khodayari Moez,Kieran R. Campbell,Rayjean J. Hung
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2022.10.03.22280659
摘要

Abstract Purpose Screening with low-dose computed tomography can reduce lung cancer-related mortality. However, most screen-detected pulmonary abnormalities do not develop into cancer and it remains challenging to identify high-risk nodules among those with indeterminate appearance. We aim to develop and validate prediction models to discriminate between benign and malignant pulmonary lesions based on radiological features. Methods Using four international lung cancer screening studies, we extracted 2,060 radiomic features for each of 16,797 nodules among 6,865 participants. After filtering out redundant and low-quality radiomic features, 642 radiomic and 9 epidemiologic features remained for model development. We used cross-validation and grid search to assess three machine learning models (XGBoost, Random Forest, LASSO) for their ability to accurately predict risk of malignancy for pulmonary nodules. We fit the top-performing ML model in the full training set. We report model performance based on the area under the curve (AUC) and calibration metrics in the held-out test set. Results The ML models that yielded the best predictive performance in cross-validation were XGBoost and LASSO, and among these models, LASSO had superior model calibration, which we considered to be the optimal model. We fit the final LASSO model based on the optimized hyperparameter from cross-validation. Our radiomics model was both well-calibrated and had a test-set AUC of 0.930 (95% CI: 0.901-0.957) and out-performed the established Brock model (AUC=0.868, 95% CI: 0.847-0.888) for nodule assessment. Conclusion We developed highly-accurate machine learning models based on radiomic and epidemiologic features from four international lung cancer screening studies that may be suitable for assessing suspicious, but indeterminate, screen-detected pulmonary nodules for risk of malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
福福发布了新的文献求助10
1秒前
ezekiet完成签到 ,获得积分10
2秒前
2秒前
酷波er应助动生电动势采纳,获得10
2秒前
echo发布了新的文献求助10
2秒前
ivying0209发布了新的文献求助10
2秒前
飞云发布了新的文献求助10
2秒前
2秒前
GGZ发布了新的文献求助10
2秒前
123lx完成签到,获得积分10
2秒前
烟花应助an采纳,获得10
3秒前
3秒前
科研通AI5应助DZQ采纳,获得10
3秒前
3秒前
3秒前
土豆不吃鱼完成签到,获得积分10
4秒前
ZHANG123完成签到,获得积分10
4秒前
smottom应助昏睡的蟠桃采纳,获得10
4秒前
4秒前
4秒前
Hello应助weijie采纳,获得10
5秒前
Guoys发布了新的文献求助20
5秒前
19205100313发布了新的文献求助10
5秒前
隐形曼青应助棉花糖采纳,获得10
5秒前
学阀发布了新的文献求助10
6秒前
LMY完成签到 ,获得积分10
6秒前
风中小夏完成签到,获得积分10
6秒前
跳跃凡桃发布了新的文献求助10
6秒前
辛晨晨发布了新的文献求助10
7秒前
王博林发布了新的文献求助10
7秒前
8秒前
今后应助FACEISIN采纳,获得10
8秒前
李健应助小荇采纳,获得10
8秒前
8秒前
阿翼发布了新的文献求助10
8秒前
福福完成签到,获得积分10
9秒前
苏苏2025完成签到,获得积分20
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969094
求助须知:如何正确求助?哪些是违规求助? 3514055
关于积分的说明 11171564
捐赠科研通 3249344
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875377
科研通“疑难数据库(出版商)”最低求助积分说明 804779