Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System

计算机科学 人工智能 特征选择 入侵检测系统 选择(遗传算法) 人工神经网络 模式识别(心理学) 特征(语言学) 入侵 融合 数据挖掘 机器学习 地质学 哲学 语言学 地球化学
作者
Ankit Thakkar,Ritika Lohiya
出处
期刊:Information Fusion [Elsevier]
卷期号:90: 353-363 被引量:110
标识
DOI:10.1016/j.inffus.2022.09.026
摘要

Intrusion Detection System (IDS) is an essential part of network as it contributes towards securing the network against various vulnerabilities and threats. Over the past decades, there has been comprehensive study in the field of IDS and various approaches have been developed to design intrusion detection and classification system. With the proliferation in the usage of Deep Learning (DL) techniques and their ability to learn data extensively, we aim to design Deep Neural Network (DNN)-based IDS. In this study, we aim to focus on enhancing the performance of DNN-based IDS by proposing a novel feature selection technique that selects features via fusion of statistical importance using Standard Deviation and Difference of Mean and Median. Here, in the proposed approach, features are pruned based on their rank derived using fusion of statistical importance. Moreover, fusion of statistical importance aims to derive relevant features that possess high discernibility and deviation, that assists in better learning of data. The performance of the proposed approach is evaluated using three intrusion detection datasets, namely, NSL-KDD, UNSW_NB-15, and CIC-IDS-2017. Performance analysis is presented in terms of different evaluation metrics such as accuracy, precision, recall, f -score, and False Positive Rate (FPR) and the results are compared with existing feature selection techniques. Apart from evaluation metrics, performance comparison is also presented in terms of execution time. Moreover, results achieved are also statistically tested using Wilcoxon Signed Rank test. • A novel feature selection technique is designed for DNN-based IDS. • Fusion of Statistical Importance-based feature selection technique is used. • Fusion of Standard deviation and Difference of Mean and Median is considered. • Experiments are performed with NSL-KDD, UNSW_NB-15, and CIC-IDS-2017 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cocolu应助WW采纳,获得10
1秒前
liyi2022发布了新的文献求助10
2秒前
Lucas完成签到,获得积分10
2秒前
坚强白凝发布了新的文献求助10
2秒前
sseukka完成签到 ,获得积分10
3秒前
3秒前
3秒前
热心丹南发布了新的文献求助10
6秒前
cici应助冷傲静竹采纳,获得20
6秒前
活泼的烙完成签到 ,获得积分10
7秒前
7秒前
棱棱完成签到,获得积分10
7秒前
优秀的千柳完成签到,获得积分10
7秒前
库凯伊完成签到,获得积分10
8秒前
8秒前
9秒前
stargazer发布了新的文献求助10
9秒前
10秒前
10秒前
香蕉觅云应助夕风残照采纳,获得10
10秒前
坚强白凝完成签到,获得积分10
11秒前
赵倩发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
时尚又蓝完成签到,获得积分10
13秒前
小沈小沈完成签到,获得积分10
13秒前
Leo发布了新的文献求助10
13秒前
14秒前
gaoyue发布了新的文献求助10
14秒前
asdxsweef应助高兴微笑采纳,获得10
15秒前
852应助水牛采纳,获得10
15秒前
15秒前
wzy发布了新的文献求助10
15秒前
15秒前
顾矜应助zyy采纳,获得10
16秒前
livresse完成签到,获得积分10
16秒前
情怀应助luoshikun采纳,获得10
16秒前
sunialnd发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296818
求助须知:如何正确求助?哪些是违规求助? 2932518
关于积分的说明 8457314
捐赠科研通 2605021
什么是DOI,文献DOI怎么找? 1422147
科研通“疑难数据库(出版商)”最低求助积分说明 661308
邀请新用户注册赠送积分活动 644397