Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System

计算机科学 人工智能 特征选择 入侵检测系统 选择(遗传算法) 人工神经网络 模式识别(心理学) 特征(语言学) 入侵 融合 数据挖掘 机器学习 地质学 哲学 语言学 地球化学
作者
Ankit Thakkar,Ritika Lohiya
出处
期刊:Information Fusion [Elsevier BV]
卷期号:90: 353-363 被引量:110
标识
DOI:10.1016/j.inffus.2022.09.026
摘要

Intrusion Detection System (IDS) is an essential part of network as it contributes towards securing the network against various vulnerabilities and threats. Over the past decades, there has been comprehensive study in the field of IDS and various approaches have been developed to design intrusion detection and classification system. With the proliferation in the usage of Deep Learning (DL) techniques and their ability to learn data extensively, we aim to design Deep Neural Network (DNN)-based IDS. In this study, we aim to focus on enhancing the performance of DNN-based IDS by proposing a novel feature selection technique that selects features via fusion of statistical importance using Standard Deviation and Difference of Mean and Median. Here, in the proposed approach, features are pruned based on their rank derived using fusion of statistical importance. Moreover, fusion of statistical importance aims to derive relevant features that possess high discernibility and deviation, that assists in better learning of data. The performance of the proposed approach is evaluated using three intrusion detection datasets, namely, NSL-KDD, UNSW_NB-15, and CIC-IDS-2017. Performance analysis is presented in terms of different evaluation metrics such as accuracy, precision, recall, f -score, and False Positive Rate (FPR) and the results are compared with existing feature selection techniques. Apart from evaluation metrics, performance comparison is also presented in terms of execution time. Moreover, results achieved are also statistically tested using Wilcoxon Signed Rank test. • A novel feature selection technique is designed for DNN-based IDS. • Fusion of Statistical Importance-based feature selection technique is used. • Fusion of Standard deviation and Difference of Mean and Median is considered. • Experiments are performed with NSL-KDD, UNSW_NB-15, and CIC-IDS-2017 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uupp完成签到,获得积分10
刚刚
君回发布了新的文献求助20
1秒前
1秒前
罗健完成签到 ,获得积分10
2秒前
YH应助sschen采纳,获得100
2秒前
唐落音完成签到,获得积分10
2秒前
3秒前
fffxuy完成签到 ,获得积分10
3秒前
999999完成签到,获得积分10
3秒前
NexusExplorer应助xiyuexue采纳,获得80
5秒前
千空发布了新的文献求助10
5秒前
现代的访曼应助清辉夜凝采纳,获得20
5秒前
xuxiii完成签到,获得积分10
6秒前
6秒前
7秒前
学术牛马发布了新的文献求助10
7秒前
7秒前
大个应助玛卡巴卡采纳,获得10
7秒前
7秒前
8秒前
ALITTLE完成签到,获得积分10
8秒前
8秒前
Luke完成签到,获得积分10
9秒前
9秒前
rong发布了新的文献求助10
10秒前
10秒前
一颗大树完成签到,获得积分10
10秒前
香蕉觅云应助SunShining采纳,获得10
10秒前
研友_VZG7GZ应助ppxx采纳,获得10
10秒前
11秒前
彭于晏应助123采纳,获得10
11秒前
背后雨柏完成签到 ,获得积分10
12秒前
12秒前
12秒前
13333完成签到,获得积分10
13秒前
14秒前
王士钰完成签到,获得积分10
15秒前
masheng发布了新的文献求助10
15秒前
月月鸟完成签到 ,获得积分10
16秒前
bigpluto发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958357
求助须知:如何正确求助?哪些是违规求助? 3504636
关于积分的说明 11119121
捐赠科研通 3235826
什么是DOI,文献DOI怎么找? 1788534
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802600