清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System

计算机科学 人工智能 特征选择 入侵检测系统 选择(遗传算法) 人工神经网络 模式识别(心理学) 特征(语言学) 入侵 融合 数据挖掘 机器学习 地质学 哲学 语言学 地球化学
作者
Ankit Thakkar,Ritika Lohiya
出处
期刊:Information Fusion [Elsevier BV]
卷期号:90: 353-363 被引量:172
标识
DOI:10.1016/j.inffus.2022.09.026
摘要

Intrusion Detection System (IDS) is an essential part of network as it contributes towards securing the network against various vulnerabilities and threats. Over the past decades, there has been comprehensive study in the field of IDS and various approaches have been developed to design intrusion detection and classification system. With the proliferation in the usage of Deep Learning (DL) techniques and their ability to learn data extensively, we aim to design Deep Neural Network (DNN)-based IDS. In this study, we aim to focus on enhancing the performance of DNN-based IDS by proposing a novel feature selection technique that selects features via fusion of statistical importance using Standard Deviation and Difference of Mean and Median. Here, in the proposed approach, features are pruned based on their rank derived using fusion of statistical importance. Moreover, fusion of statistical importance aims to derive relevant features that possess high discernibility and deviation, that assists in better learning of data. The performance of the proposed approach is evaluated using three intrusion detection datasets, namely, NSL-KDD, UNSW_NB-15, and CIC-IDS-2017. Performance analysis is presented in terms of different evaluation metrics such as accuracy, precision, recall, f -score, and False Positive Rate (FPR) and the results are compared with existing feature selection techniques. Apart from evaluation metrics, performance comparison is also presented in terms of execution time. Moreover, results achieved are also statistically tested using Wilcoxon Signed Rank test. • A novel feature selection technique is designed for DNN-based IDS. • Fusion of Statistical Importance-based feature selection technique is used. • Fusion of Standard deviation and Difference of Mean and Median is considered. • Experiments are performed with NSL-KDD, UNSW_NB-15, and CIC-IDS-2017 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助oleskarabach采纳,获得10
4秒前
欣欣完成签到 ,获得积分10
20秒前
22秒前
orangr55完成签到,获得积分10
35秒前
35秒前
怕黑斑马发布了新的文献求助10
40秒前
科研啄木鸟完成签到 ,获得积分10
1分钟前
drhwang完成签到,获得积分10
1分钟前
slycmd完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助100
2分钟前
cy0824完成签到 ,获得积分10
3分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
Ljm发布了新的文献求助20
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
在水一方应助李哈哈采纳,获得10
4分钟前
Ljm发布了新的文献求助30
4分钟前
5分钟前
李哈哈发布了新的文献求助10
5分钟前
PAIDAXXXX完成签到,获得积分10
5分钟前
Ljm发布了新的文献求助30
5分钟前
大气的画板完成签到 ,获得积分10
5分钟前
QCB完成签到 ,获得积分10
6分钟前
6分钟前
风信子发布了新的文献求助10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
7分钟前
两个榴莲完成签到,获得积分0
7分钟前
好运常在完成签到 ,获得积分10
7分钟前
充电宝应助啊呆哦采纳,获得10
8分钟前
8分钟前
隐形曼青应助活泼学生采纳,获得10
8分钟前
啊呆哦完成签到,获得积分10
8分钟前
啊呆哦发布了新的文献求助10
8分钟前
星辰大海应助十分十分佳采纳,获得10
8分钟前
8分钟前
十分十分佳完成签到,获得积分20
8分钟前
8分钟前
GPTea举报李小雨求助涉嫌违规
8分钟前
9分钟前
活泼学生发布了新的文献求助10
9分钟前
neversay4ever完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901079
求助须知:如何正确求助?哪些是违规求助? 4180658
关于积分的说明 12977160
捐赠科研通 3945491
什么是DOI,文献DOI怎么找? 2164166
邀请新用户注册赠送积分活动 1182447
关于科研通互助平台的介绍 1088773