Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aktuell发布了新的文献求助10
刚刚
王子安应助Stardust采纳,获得10
2秒前
充电宝应助顺利涵菡采纳,获得10
4秒前
5秒前
Buduan完成签到,获得积分10
6秒前
6秒前
Ma关注了科研通微信公众号
8秒前
8秒前
9秒前
畅快城发布了新的文献求助10
9秒前
复成完成签到 ,获得积分10
10秒前
yinle关注了科研通微信公众号
10秒前
aktuell完成签到,获得积分10
10秒前
10秒前
ANG发布了新的文献求助10
10秒前
Lucas应助2116564采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
清辉夜凝发布了新的文献求助10
11秒前
可爱的函函应助Shrine采纳,获得10
12秒前
recovery应助Aprilapple采纳,获得10
13秒前
baonali发布了新的文献求助10
14秒前
123发布了新的文献求助30
14秒前
小晓发布了新的文献求助10
14秒前
科研通AI2S应助Andema采纳,获得10
14秒前
16秒前
16秒前
19秒前
19秒前
21秒前
李健应助假发君采纳,获得10
22秒前
23秒前
KIORking发布了新的文献求助10
23秒前
落忆发布了新的文献求助10
23秒前
tengfei完成签到 ,获得积分10
23秒前
yinle发布了新的文献求助10
24秒前
24秒前
Ma发布了新的文献求助10
24秒前
24秒前
shensiang完成签到,获得积分10
25秒前
2116564发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174