亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
4秒前
科研通AI6应助殷楷霖采纳,获得10
7秒前
吱吱吱吱发布了新的文献求助10
9秒前
科研通AI6应助light派采纳,获得10
11秒前
16秒前
16秒前
21秒前
24秒前
我哥王半仙完成签到 ,获得积分10
26秒前
强强完成签到 ,获得积分10
26秒前
MJH123456发布了新的文献求助10
27秒前
狂野的听云完成签到 ,获得积分10
34秒前
46秒前
47秒前
光合作用完成签到,获得积分10
53秒前
柏风华发布了新的文献求助10
53秒前
56秒前
务实书包完成签到,获得积分10
58秒前
小飞发布了新的文献求助10
1分钟前
向东是大海完成签到,获得积分10
1分钟前
浮游应助向东是大海采纳,获得10
1分钟前
小飞完成签到,获得积分10
1分钟前
Murphy完成签到,获得积分10
1分钟前
奔跑的小熊完成签到 ,获得积分10
1分钟前
阿狸完成签到 ,获得积分10
1分钟前
找文献完成签到 ,获得积分10
1分钟前
柏风华完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Irene发布了新的文献求助10
1分钟前
科研通AI6应助殷楷霖采纳,获得10
1分钟前
踏实的无敌完成签到,获得积分10
1分钟前
Akim应助菜新采纳,获得10
2分钟前
Irene完成签到,获得积分20
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644502
求助须知:如何正确求助?哪些是违规求助? 4764327
关于积分的说明 15025209
捐赠科研通 4802884
什么是DOI,文献DOI怎么找? 2567685
邀请新用户注册赠送积分活动 1525344
关于科研通互助平台的介绍 1484802