亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
19秒前
直率的雪巧完成签到,获得积分10
40秒前
47秒前
ceeray23应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
58秒前
1分钟前
1461644768完成签到,获得积分10
1分钟前
毕嵩山发布了新的文献求助10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
传奇3应助毕嵩山采纳,获得10
1分钟前
liuyingjuan829完成签到,获得积分20
1分钟前
香蕉觅云应助邢契采纳,获得10
1分钟前
2分钟前
didididm完成签到,获得积分10
2分钟前
天天快乐应助xuan采纳,获得10
2分钟前
毕嵩山发布了新的文献求助10
2分钟前
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
毕嵩山完成签到,获得积分20
2分钟前
2分钟前
邢契发布了新的文献求助10
2分钟前
科研通AI6应助邢契采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
邢契完成签到,获得积分10
3分钟前
MiaMia发布了新的文献求助30
3分钟前
jerry完成签到,获得积分10
3分钟前
Als完成签到,获得积分20
3分钟前
殷勤的紫槐应助李剑鸿采纳,获得200
3分钟前
brian0326完成签到,获得积分10
3分钟前
英姑应助小杨采纳,获得10
3分钟前
4分钟前
辉辉应助科研通管家采纳,获得10
4分钟前
5分钟前
陶醉寒珊发布了新的文献求助10
5分钟前
6分钟前
小杨发布了新的文献求助10
6分钟前
6分钟前
MiaMia完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913716
捐赠科研通 4749427
什么是DOI,文献DOI怎么找? 2549289
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091