亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1分钟前
李健应助ARESCI采纳,获得10
1分钟前
samsahpiyaz发布了新的文献求助10
1分钟前
犹豫翠萱完成签到 ,获得积分10
2分钟前
老迟到的羊完成签到 ,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
3分钟前
moonlight发布了新的文献求助10
3分钟前
gjq完成签到,获得积分10
4分钟前
hhuajw完成签到,获得积分10
4分钟前
烂漫的芫完成签到 ,获得积分10
4分钟前
4分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
4分钟前
obedVL完成签到,获得积分10
5分钟前
昵称已挥发完成签到,获得积分10
5分钟前
sldragon完成签到,获得积分10
5分钟前
5分钟前
xiaoyuan发布了新的文献求助10
5分钟前
小黄还你好完成签到 ,获得积分10
5分钟前
LYL完成签到,获得积分10
6分钟前
Wei发布了新的文献求助10
6分钟前
6分钟前
群山完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
脑洞疼应助米兰的小铁匠采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
9分钟前
gszy1975完成签到,获得积分10
10分钟前
量子星尘发布了新的文献求助10
10分钟前
SciGPT应助务实的犀牛采纳,获得10
10分钟前
冉亦完成签到,获得积分10
10分钟前
11分钟前
yhw发布了新的文献求助10
11分钟前
Jay完成签到,获得积分10
11分钟前
空里叽哇完成签到,获得积分10
12分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668646
关于积分的说明 14771521
捐赠科研通 4613528
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516