Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李李发布了新的文献求助10
刚刚
lzy完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
Annie完成签到,获得积分10
3秒前
uvk完成签到,获得积分10
3秒前
曾经的姒发布了新的文献求助30
4秒前
5秒前
szpilman完成签到,获得积分20
5秒前
英姑应助OO圈圈采纳,获得10
5秒前
陈兮兮完成签到,获得积分10
5秒前
6秒前
7秒前
oywc应助笠柚采纳,获得10
7秒前
丹dan完成签到,获得积分10
7秒前
咩噗发布了新的文献求助10
7秒前
8秒前
beplayer1完成签到 ,获得积分10
8秒前
乐乐应助李李李采纳,获得10
9秒前
小野狼发布了新的文献求助10
10秒前
光亮青柏完成签到 ,获得积分10
10秒前
赘婿应助111采纳,获得10
10秒前
wang完成签到,获得积分10
10秒前
111完成签到,获得积分20
11秒前
夏爽2023完成签到,获得积分10
12秒前
12秒前
Walwyn完成签到 ,获得积分10
12秒前
求大佬帮助完成签到,获得积分10
12秒前
小航爱学习完成签到,获得积分10
13秒前
英勇夜绿完成签到,获得积分10
14秒前
平常的听蓉完成签到,获得积分10
14秒前
个性的紫菜应助mi采纳,获得20
14秒前
整齐水杯应助tdd采纳,获得50
15秒前
17秒前
我讨厌文献综述完成签到 ,获得积分10
17秒前
可爱的函函应助大大小小采纳,获得10
18秒前
呼延水云发布了新的文献求助10
18秒前
怡然念之完成签到 ,获得积分10
18秒前
985博士完成签到,获得积分20
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038