Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁者发布了新的文献求助20
1秒前
1秒前
现实的白猫完成签到,获得积分20
4秒前
5秒前
Muzz发布了新的文献求助10
6秒前
XMH发布了新的文献求助10
7秒前
隐形曼青应助优美紫槐采纳,获得10
7秒前
科目三应助Lendar采纳,获得10
7秒前
彭于晏应助过时的棒棒糖采纳,获得100
8秒前
qhtwld发布了新的文献求助10
12秒前
14秒前
17秒前
lalala完成签到,获得积分10
18秒前
ddd完成签到,获得积分10
18秒前
19秒前
无花果应助1526918042采纳,获得10
19秒前
19秒前
笋笋完成签到,获得积分10
20秒前
Owen应助南枝焙雪采纳,获得10
20秒前
踌躇前半生完成签到,获得积分10
20秒前
psylan完成签到,获得积分10
20秒前
Magic麦发布了新的文献求助10
21秒前
科研闲人完成签到,获得积分10
21秒前
22秒前
Harlotte发布了新的文献求助10
22秒前
能干冰露完成签到,获得积分10
22秒前
山月鹿完成签到,获得积分10
23秒前
鸠摩智发布了新的文献求助10
23秒前
李健的小迷弟应助Lay采纳,获得10
23秒前
xiaominl发布了新的文献求助80
24秒前
科研牛马完成签到,获得积分10
25秒前
彭于晏应助动听锦程采纳,获得10
25秒前
XMH完成签到,获得积分10
27秒前
文静的绿真完成签到,获得积分10
27秒前
笋笋发布了新的文献求助10
27秒前
丰富的雪糕完成签到,获得积分10
28秒前
slj完成签到,获得积分10
28秒前
28秒前
我是老大应助ayu采纳,获得10
30秒前
一清完成签到,获得积分20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232