Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
kjdgahdg完成签到,获得积分10
2秒前
fleix发布了新的文献求助10
4秒前
不重名完成签到 ,获得积分10
4秒前
金土豆的福袋子完成签到 ,获得积分20
6秒前
羽冰酒完成签到 ,获得积分10
8秒前
Jzhaoc580完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
kkjust完成签到,获得积分10
16秒前
ChatGPT发布了新的文献求助10
18秒前
斯文的思菱完成签到,获得积分10
21秒前
然大宝发布了新的文献求助10
21秒前
swordshine完成签到,获得积分0
22秒前
22秒前
Swait完成签到,获得积分10
26秒前
闻巷雨完成签到 ,获得积分10
29秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
木木杨完成签到,获得积分10
33秒前
雪糕发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
34秒前
al完成签到 ,获得积分0
39秒前
39秒前
量子星尘发布了新的文献求助10
39秒前
43秒前
dldldl完成签到,获得积分10
46秒前
Gary发布了新的文献求助30
49秒前
方方完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
51秒前
滴滴完成签到 ,获得积分10
52秒前
小亮哈哈完成签到,获得积分0
52秒前
Research完成签到 ,获得积分10
54秒前
adamchase完成签到,获得积分10
57秒前
ChatGPT发布了新的文献求助10
57秒前
i2stay完成签到,获得积分0
58秒前
圣晟胜完成签到,获得积分10
1分钟前
1分钟前
CGFHEMAN完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936