Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助熊尼采纳,获得10
1秒前
Joy_0627发布了新的文献求助20
2秒前
曾经的凌青完成签到 ,获得积分20
3秒前
勤劳小蕾发布了新的文献求助30
3秒前
英姑应助海拾月采纳,获得10
4秒前
希望天下0贩的0应助Wang采纳,获得10
4秒前
所所应助丸子_2025000采纳,获得10
4秒前
迷桥应助丸子_2025000采纳,获得10
4秒前
4秒前
小孟发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助150
6秒前
豆豆可完成签到,获得积分10
7秒前
9秒前
10秒前
善学以致用应助正直如彤采纳,获得10
10秒前
11秒前
14秒前
14秒前
叶y发布了新的文献求助10
15秒前
15秒前
顾子墨发布了新的文献求助10
16秒前
焦糖布丁的滋味完成签到,获得积分10
17秒前
18秒前
HUCAI发布了新的文献求助10
18秒前
18秒前
于明轩完成签到,获得积分10
18秒前
ho发布了新的文献求助30
18秒前
Charon完成签到,获得积分10
19秒前
19秒前
19秒前
科研通AI6应助ddc_0819采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
丘比特应助陈大海采纳,获得10
21秒前
awei发布了新的文献求助10
22秒前
Running发布了新的文献求助10
23秒前
海拾月发布了新的文献求助10
23秒前
23秒前
Akim应助勤劳小蕾采纳,获得30
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075458
求助须知:如何正确求助?哪些是违规求助? 4295230
关于积分的说明 13383829
捐赠科研通 4116888
什么是DOI,文献DOI怎么找? 2254537
邀请新用户注册赠送积分活动 1259173
关于科研通互助平台的介绍 1191935