Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123lura发布了新的文献求助10
5秒前
仙兮熙完成签到 ,获得积分10
5秒前
5秒前
土豆子完成签到 ,获得积分10
8秒前
8秒前
8秒前
阳光路上发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
19秒前
木子发布了新的文献求助10
22秒前
24秒前
量子星尘发布了新的文献求助10
27秒前
29秒前
七七完成签到 ,获得积分10
29秒前
30秒前
土地完成签到 ,获得积分10
31秒前
英姑应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
hh发布了新的文献求助10
32秒前
tuanheqi应助科研通管家采纳,获得50
32秒前
老福贵儿应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
传奇3应助科研通管家采纳,获得10
32秒前
大龙哥886应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
852应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
老福贵儿应助科研通管家采纳,获得10
33秒前
田様应助科研通管家采纳,获得10
33秒前
33秒前
竹子发布了新的文献求助10
35秒前
38秒前
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652919
求助须知:如何正确求助?哪些是违规求助? 4788733
关于积分的说明 15062234
捐赠科研通 4811531
什么是DOI,文献DOI怎么找? 2573922
邀请新用户注册赠送积分活动 1529695
关于科研通互助平台的介绍 1488390