Abstract 17213: Machine Learning-Based Prediction of Type A Aortic Dissection

医学 主动脉夹层 接收机工作特性 随机森林 升主动脉 梯度升压 决策树 机器学习 弗雷明翰风险评分 试验装置 人工智能 内科学 主动脉 疾病 计算机科学
作者
Juan Velasco,Mohammad A. Zafar,John A. Elefteriades
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:148 (Suppl_1)
标识
DOI:10.1161/circ.148.suppl_1.17213
摘要

Background: Existing risk predictors of aortic dissection have certain limitations. We hypothesized that machine learning models trained on clinical, demographic, and anthropometric features can further improve the prediction of patient outcomes. Objective: This study aims to develop a machine learning model that predicts type A aortic dissection and can help clinical decision making. Methods: This cohort study used the Yale Aortic Institute database. The models incorporated variables spanning demographic, anthropometric, medical history, radiological, and laboratory domains. The models were trained and validated using stratified 10-fold cross-validation. Hyperparameters for each algorithm were tuned through grid-search on the training folds. The models were trained to optimize the area under the receiver operator characteristic curve (AUROC) and were assessed in a held-out test set. Results: A total of 2,109 patients were analyzed in our study. Among them, 271 were diagnosed with type A aortic dissection. The models demonstrated strong performance on the held-out test set. Specifically, the extreme gradient boosting decision tree model achieved an AUROC of 0.821, while the random forest model achieved an AUROC of 0.820. Importantly, these models outperformed the prediction of type A aortic dissection when based solely on the ascending aorta diameter, which had an AUROC of 0.549. Besides the ascending aorta diameter, the key predictors were age, weight, height, family history, smoking, bicuspid aortic valve, and hypertension. Conclusion: We developed a machine learning model that provides an individualized prediction of the development of type A aortic dissection. This approach provides an accessible, efficient, and remote tool to identify high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助圣尊鳕幽采纳,获得10
刚刚
典雅完成签到,获得积分10
刚刚
K423发布了新的文献求助10
刚刚
Tammy完成签到,获得积分10
刚刚
烟花应助Yu采纳,获得10
刚刚
完美世界应助DXiao采纳,获得10
刚刚
Cecila完成签到,获得积分10
1秒前
天天快乐应助小叙采纳,获得10
1秒前
橙子完成签到,获得积分10
1秒前
不将就完成签到,获得积分10
1秒前
清脆的飞丹完成签到,获得积分10
2秒前
JamesPei应助KQ采纳,获得10
2秒前
丘比特应助liu采纳,获得10
2秒前
Happy422完成签到,获得积分10
2秒前
1223完成签到,获得积分10
2秒前
赤恩完成签到,获得积分10
2秒前
香蕉觅云应助wys2493采纳,获得10
2秒前
duoya发布了新的文献求助10
3秒前
pcr163应助妙妙0采纳,获得50
3秒前
一自文又欠完成签到 ,获得积分10
3秒前
文静完成签到,获得积分20
3秒前
爆米花应助眯眯眼的柠檬采纳,获得10
3秒前
wql完成签到,获得积分10
4秒前
天天快乐应助Cozy采纳,获得10
4秒前
科研通AI6应助slim采纳,获得10
5秒前
谦让翅膀完成签到,获得积分10
5秒前
小晴天完成签到,获得积分10
5秒前
Huang完成签到,获得积分10
5秒前
不知名的小蜜蜂完成签到,获得积分10
5秒前
5秒前
Yiran完成签到,获得积分10
6秒前
6秒前
7秒前
可爱的函函应助王碱采纳,获得10
8秒前
轻松绿旋完成签到,获得积分10
8秒前
9秒前
9秒前
揽星发布了新的文献求助10
9秒前
无荒发布了新的文献求助10
10秒前
麻油香菜发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251