反推
控制理论(社会学)
有界函数
死区
非线性系统
自适应控制
李雅普诺夫函数
控制器(灌溉)
计算
计算机科学
数学
控制(管理)
算法
人工智能
数学分析
海洋学
物理
量子力学
农学
生物
地质学
作者
Meng Wu,Li‐Bing Wu,Pu Wang
标识
DOI:10.1016/j.amc.2023.128523
摘要
This article investigates the event-triggered adaptive control problem for a class of leaderless multi-agent systems with output constraints and unknown dead-zones. The adaptive updating laws are designed to eliminate the effects of unknown dead-zones by employing adaptive backstepping technique. The barrier Lyapunov function (BLF) is introduced to guarantee that the output constraints are not violated. Then, a generalized relative threshold is proposed by utilizing the neighboring controller errors to alleviate the computation burden dramatically. It is further shown that all the closed-loop signals are uniformly bounded and that the consensus tracking errors asymptotically tend to zero. A simulation example verifies the validation of the developed control strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI