已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning and multi-modal fusion for real-time multi-object tracking: Algorithms, challenges, datasets, and comparative study

计算机科学 水准点(测量) 人工智能 视频跟踪 背景(考古学) 传感器融合 深度学习 机器学习 跟踪(教育) 车辆跟踪系统 目标检测 集合(抽象数据类型) 对象(语法) 模式识别(心理学) 卡尔曼滤波器 心理学 古生物学 教育学 大地测量学 生物 程序设计语言 地理
作者
Xuan Wang,Zhaojie Sun,Abdellah Chehri,Gwanggil Jeon,Yongchao Song
出处
期刊:Information Fusion [Elsevier]
卷期号:105: 102247-102247 被引量:5
标识
DOI:10.1016/j.inffus.2024.102247
摘要

Real-time multi-object tracking (MOT) is a complex task involving detecting and tracking multiple objects. After the objects are detected, they are assigned markers, and their trajectories are tracked in real-time. The scientific community is intrigued by the possibilities of utilizing MOT technology in the context of smart cities. Their primary focus lies in the domains of intelligent transportation, detection of vehicles and pedestrians, crowd surveillance, and public safety. Deep learning techniques have been developed in recent years to effectively tackle the challenges of real-time MOT tasks and enhance tracking performance. Environmental perception within smart traffic applications relies heavily on sensor data fusion. In traffic scenarios, a thoughtful approach involves utilizing a combination of sensors and cameras to detect and track targets while gathering valuable data effectively. However, it faces challenges when it comes to detecting and tracking objects that are in motion, have complex changes in appearance, or are in crowded scenes. This paper explores the foundational standard for real-time Multiple Object Tracking tasks. We prioritize the examination of quantitative measures by conducting a comprehensive analysis of widely utilized benchmark datasets and metrics. This study also investigates established embedding techniques and multi-modal fusion methods within real-time multi-target tracking algorithms. Each strategy will be classified and assessed according to a predefined set of principles. The paper presents a comprehensive analysis and visual representation of various MOT strategies. Finally, this paper aims to present an overview of the current challenges faced by the MOT mission, as well as the potential objectives that lie ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樱桃猴子完成签到,获得积分10
刚刚
刚刚
WUHUDASM发布了新的文献求助10
3秒前
啊强完成签到 ,获得积分10
5秒前
Chen发布了新的文献求助20
5秒前
青竹完成签到,获得积分10
8秒前
小怪完成签到,获得积分10
9秒前
懒羊羊大王完成签到 ,获得积分10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
11秒前
Ethan完成签到 ,获得积分0
12秒前
科研通AI5应助elisa828采纳,获得10
15秒前
lsl完成签到,获得积分20
15秒前
17秒前
小彤完成签到 ,获得积分10
18秒前
马騳骉完成签到,获得积分10
23秒前
yiren完成签到 ,获得积分10
23秒前
科研通AI5应助开天神秀采纳,获得10
24秒前
书文混四方完成签到 ,获得积分10
26秒前
Fn完成签到 ,获得积分10
29秒前
29秒前
YDSL完成签到,获得积分10
31秒前
小耗子完成签到,获得积分10
32秒前
李爱国应助努力的宁采纳,获得10
32秒前
尾状叶完成签到 ,获得积分10
33秒前
受伤哈密瓜完成签到 ,获得积分10
34秒前
xylor完成签到 ,获得积分10
35秒前
刻苦的小土豆完成签到 ,获得积分10
36秒前
YDSL发布了新的文献求助30
36秒前
38秒前
甜甜的以筠完成签到 ,获得积分10
38秒前
安德森先生完成签到,获得积分10
39秒前
ryanfeng完成签到,获得积分0
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544311
求助须知:如何正确求助?哪些是违规求助? 3121491
关于积分的说明 9347496
捐赠科研通 2819748
什么是DOI,文献DOI怎么找? 1550401
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265