Multi-View Scene Classification Based on Feature Integration and Evidence Decision Fusion

计算机科学 特征(语言学) 融合 人工智能 模式识别(心理学) 哲学 语言学
作者
Weixun Zhou,Yongxin Shi,Xiao Huang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (5): 738-738 被引量:3
标识
DOI:10.3390/rs16050738
摘要

Leveraging multi-view remote sensing images in scene classification tasks significantly enhances the precision of such classifications. This approach, however, poses challenges due to the simultaneous use of multi-view images, which often leads to a misalignment between the visual content and semantic labels, thus complicating the classification process. In addition, as the number of image viewpoints increases, the quality problem for remote sensing images further limits the effectiveness of multi-view image classification. Traditional scene classification methods predominantly employ SoftMax deep learning techniques, which lack the capability to assess the quality of remote sensing images or to provide explicit explanations for the network’s predictive outcomes. To address these issues, this paper introduces a novel end-to-end multi-view decision fusion network specifically designed for remote sensing scene classification. The network integrates information from multi-view remote sensing images under the guidance of image credibility and uncertainty, and when the multi-view image fusion process encounters conflicts, it greatly alleviates the conflicts and provides more reasonable and credible predictions for the multi-view scene classification results. Initially, multi-scale features are extracted from the multi-view images using convolutional neural networks (CNNs). Following this, an asymptotic adaptive feature fusion module (AAFFM) is constructed to gradually integrate these multi-scale features. An adaptive spatial fusion method is then applied to assign different spatial weights to the multi-scale feature maps, thereby significantly enhancing the model’s feature discrimination capability. Finally, an evidence decision fusion module (EDFM), utilizing evidence theory and the Dirichlet distribution, is developed. This module quantitatively assesses the uncertainty in the multi-perspective image classification process. Through the fusing of multi-perspective remote sensing image information in this module, a rational explanation for the prediction results is provided. The efficacy of the proposed method was validated through experiments conducted on the AiRound and CV-BrCT datasets. The results show that our method not only improves single-view scene classification results but also advances multi-view remote sensing scene classification results by accurately characterizing the scene and mitigating the conflicting nature of the fusion process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliu完成签到,获得积分10
1秒前
留白完成签到 ,获得积分10
1秒前
Hwt应助lalalala采纳,获得10
1秒前
Georgechan发布了新的文献求助10
2秒前
所所应助Lois采纳,获得10
3秒前
3秒前
坚定之玉发布了新的文献求助10
4秒前
小小完成签到,获得积分10
5秒前
jtj关闭了jtj文献求助
5秒前
文艺鞋垫发布了新的文献求助20
6秒前
6秒前
7秒前
SciGPT应助yulee采纳,获得10
8秒前
Lili发布了新的文献求助10
8秒前
bkagyin应助小白采纳,获得10
10秒前
10秒前
大个应助呓语采纳,获得10
10秒前
11秒前
Seven完成签到 ,获得积分10
12秒前
科研通AI2S应助yuyuyuyu采纳,获得10
12秒前
千冬发布了新的文献求助10
12秒前
蛋宝完成签到,获得积分10
13秒前
小二郎应助拾柒采纳,获得10
14秒前
闪闪可乐发布了新的文献求助10
15秒前
Nacy发布了新的文献求助10
16秒前
papertiger发布了新的文献求助30
16秒前
17秒前
17秒前
pangguanzhe发布了新的文献求助10
17秒前
坚定之玉完成签到 ,获得积分20
19秒前
Lois完成签到,获得积分10
19秒前
Erick发布了新的文献求助10
19秒前
Owen应助忧郁的凝竹采纳,获得10
20秒前
文艺鞋垫发布了新的文献求助10
21秒前
Lili完成签到,获得积分10
21秒前
zdx1022完成签到,获得积分10
22秒前
小二郎应助PGTrump采纳,获得10
23秒前
24秒前
24秒前
24秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265155
求助须知:如何正确求助?哪些是违规求助? 2905120
关于积分的说明 8332765
捐赠科研通 2575538
什么是DOI,文献DOI怎么找? 1399868
科研通“疑难数据库(出版商)”最低求助积分说明 654595
邀请新用户注册赠送积分活动 633449