Multi-View Scene Classification Based on Feature Integration and Evidence Decision Fusion

计算机科学 特征(语言学) 融合 人工智能 模式识别(心理学) 哲学 语言学
作者
Weixun Zhou,Yongxin Shi,Xiao Huang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (5): 738-738 被引量:3
标识
DOI:10.3390/rs16050738
摘要

Leveraging multi-view remote sensing images in scene classification tasks significantly enhances the precision of such classifications. This approach, however, poses challenges due to the simultaneous use of multi-view images, which often leads to a misalignment between the visual content and semantic labels, thus complicating the classification process. In addition, as the number of image viewpoints increases, the quality problem for remote sensing images further limits the effectiveness of multi-view image classification. Traditional scene classification methods predominantly employ SoftMax deep learning techniques, which lack the capability to assess the quality of remote sensing images or to provide explicit explanations for the network’s predictive outcomes. To address these issues, this paper introduces a novel end-to-end multi-view decision fusion network specifically designed for remote sensing scene classification. The network integrates information from multi-view remote sensing images under the guidance of image credibility and uncertainty, and when the multi-view image fusion process encounters conflicts, it greatly alleviates the conflicts and provides more reasonable and credible predictions for the multi-view scene classification results. Initially, multi-scale features are extracted from the multi-view images using convolutional neural networks (CNNs). Following this, an asymptotic adaptive feature fusion module (AAFFM) is constructed to gradually integrate these multi-scale features. An adaptive spatial fusion method is then applied to assign different spatial weights to the multi-scale feature maps, thereby significantly enhancing the model’s feature discrimination capability. Finally, an evidence decision fusion module (EDFM), utilizing evidence theory and the Dirichlet distribution, is developed. This module quantitatively assesses the uncertainty in the multi-perspective image classification process. Through the fusing of multi-perspective remote sensing image information in this module, a rational explanation for the prediction results is provided. The efficacy of the proposed method was validated through experiments conducted on the AiRound and CV-BrCT datasets. The results show that our method not only improves single-view scene classification results but also advances multi-view remote sensing scene classification results by accurately characterizing the scene and mitigating the conflicting nature of the fusion process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赤练仙子完成签到,获得积分10
2秒前
MnO2fff应助zsyzxb采纳,获得20
5秒前
kingwill应助zsyzxb采纳,获得20
5秒前
顺利鱼完成签到,获得积分10
6秒前
8秒前
9秒前
Xx.完成签到,获得积分10
10秒前
星辰大海应助内向凌兰采纳,获得10
10秒前
10秒前
wuzhizhiya完成签到,获得积分10
11秒前
12秒前
rudjs发布了新的文献求助10
12秒前
15秒前
Ava应助何糖采纳,获得10
15秒前
桐桐应助美丽的芷烟采纳,获得10
15秒前
野子完成签到,获得积分10
16秒前
情怀应助小D采纳,获得30
17秒前
yuan发布了新的文献求助10
17秒前
berry发布了新的文献求助10
18秒前
18秒前
淡淡采白发布了新的文献求助10
19秒前
思源应助勤恳慕蕊采纳,获得10
19秒前
知犯何逆完成签到 ,获得积分10
20秒前
啊哈完成签到,获得积分10
20秒前
21秒前
21秒前
Draven完成签到 ,获得积分10
21秒前
tmpstlml发布了新的文献求助10
22秒前
张红梨完成签到,获得积分10
22秒前
迷迷完成签到,获得积分20
23秒前
23秒前
科研通AI2S应助chen采纳,获得10
24秒前
穿山甲坐飞机完成签到 ,获得积分10
24秒前
25秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
25秒前
科研通AI5应助经年采纳,获得10
25秒前
25秒前
勤劳晓亦应助木头人采纳,获得10
26秒前
科研通AI5应助想瘦的海豹采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808