Broadband sound absorption using hybrid resonators with embedded necks and micro-perforations in parallel

宽带 谐振器 材料科学 声学 吸收(声学) 声音(地理) 复合材料 计算机科学 光电子学 电信 物理
作者
Hyeonbin Ryoo,Ki Yong Lee,Wonju Jeon
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111205-111205
标识
DOI:10.1016/j.ymssp.2024.111205
摘要

This study proposes an acoustic metasurface composed of Helmholtz resonators coupled with micro-perforations to achieve perfect sound absorption with a low Q-factor. A key feature of the metasurface is the parallel arrangement of an embedded neck and a micro-perforated panel within a single unit cell. This geometrical configuration facilitates the generation of hybrid resonance, leading to perfect absorption at the target frequency, in which the metasurface dimensions are significantly smaller than the corresponding wavelengths. To guide design choices, a theoretical model is introduced to outline the frequency-dependent effective impedance of the resonators, thereby aiding in specifying the geometric parameters required for impedance matching with the ambient air. Experimental validation for a unit cell fabricated using three-dimensional printing confirms the efficacy of the metasurface at a target frequency of 480 Hz. Supercells comprising multiple resonators are explored to extend the absorption bandwidth, and absorption coefficient exceeding 0.9 over a two-thirds octave range (472–739 Hz) is achieved with a supercell of subwavelength thickness λ/12. A machine learning algorithm based on artificial neural network is applied to further optimize the design. Using the theoretical model as a foundation, these techniques facilitate the identification of an optimal metasurface design, achieving a 90 % absorption band over an octave range (380–790 Hz) with a thickness of λ/15. The metasurfaces introduced herein offer space-efficient alternatives to conventional sound-absorbing materials and hold promise for applications in noise reduction and architectural acoustic design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助叫我小可爱采纳,获得10
1秒前
CodeCraft应助JiaxuanDai采纳,获得10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
十二发布了新的文献求助10
4秒前
星辰大海应助完美的婴采纳,获得10
5秒前
fly完成签到 ,获得积分10
7秒前
汉堡包应助1111采纳,获得10
7秒前
yf完成签到 ,获得积分10
7秒前
SXIEONE发布了新的文献求助10
8秒前
8秒前
liangliang完成签到,获得积分10
9秒前
9秒前
happy完成签到 ,获得积分20
9秒前
Jessica应助Yue采纳,获得30
12秒前
botanist完成签到 ,获得积分10
12秒前
14秒前
愫浅发布了新的文献求助10
15秒前
15秒前
耍酷的小海豚完成签到,获得积分10
17秒前
852应助SXIEONE采纳,获得10
17秒前
快乐的白桃完成签到 ,获得积分10
18秒前
happy关注了科研通微信公众号
18秒前
18秒前
大气摩托发布了新的文献求助10
20秒前
20秒前
在水一方应助BreadCheems采纳,获得10
21秒前
闪电发布了新的文献求助30
21秒前
啦啦啦完成签到,获得积分10
21秒前
英姑应助愫浅采纳,获得10
21秒前
22秒前
一瓣橘子完成签到,获得积分10
23秒前
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798