Broadband sound absorption using hybrid resonators with embedded necks and micro-perforations in parallel

宽带 谐振器 材料科学 声学 吸收(声学) 声音(地理) 复合材料 计算机科学 光电子学 电信 物理
作者
Hyeonbin Ryoo,Ki Yong Lee,Wonju Jeon
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:211: 111205-111205 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111205
摘要

This study proposes an acoustic metasurface composed of Helmholtz resonators coupled with micro-perforations to achieve perfect sound absorption with a low Q-factor. A key feature of the metasurface is the parallel arrangement of an embedded neck and a micro-perforated panel within a single unit cell. This geometrical configuration facilitates the generation of hybrid resonance, leading to perfect absorption at the target frequency, in which the metasurface dimensions are significantly smaller than the corresponding wavelengths. To guide design choices, a theoretical model is introduced to outline the frequency-dependent effective impedance of the resonators, thereby aiding in specifying the geometric parameters required for impedance matching with the ambient air. Experimental validation for a unit cell fabricated using three-dimensional printing confirms the efficacy of the metasurface at a target frequency of 480 Hz. Supercells comprising multiple resonators are explored to extend the absorption bandwidth, and absorption coefficient exceeding 0.9 over a two-thirds octave range (472–739 Hz) is achieved with a supercell of subwavelength thickness λ/12. A machine learning algorithm based on artificial neural network is applied to further optimize the design. Using the theoretical model as a foundation, these techniques facilitate the identification of an optimal metasurface design, achieving a 90 % absorption band over an octave range (380–790 Hz) with a thickness of λ/15. The metasurfaces introduced herein offer space-efficient alternatives to conventional sound-absorbing materials and hold promise for applications in noise reduction and architectural acoustic design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzw完成签到,获得积分10
5秒前
Guochunbao完成签到,获得积分10
6秒前
哈哈哈完成签到 ,获得积分10
8秒前
科研通AI5应助蒋念寒采纳,获得10
8秒前
月亮褪色了完成签到 ,获得积分20
12秒前
萱棚完成签到 ,获得积分10
12秒前
13秒前
Cao完成签到 ,获得积分10
13秒前
ENG完成签到,获得积分10
15秒前
alick完成签到,获得积分10
17秒前
刘刘完成签到,获得积分10
18秒前
Tom完成签到,获得积分10
19秒前
Villanellel发布了新的文献求助10
20秒前
程艳完成签到 ,获得积分10
21秒前
MINGHUI完成签到,获得积分10
22秒前
22秒前
子车半烟完成签到,获得积分10
22秒前
24秒前
淳于安筠完成签到,获得积分10
24秒前
雨晴完成签到,获得积分10
27秒前
jbq发布了新的文献求助10
27秒前
joshar完成签到,获得积分10
27秒前
28秒前
量子星尘发布了新的文献求助10
30秒前
blueblue完成签到,获得积分10
32秒前
落后秋烟完成签到,获得积分10
34秒前
大橙子发布了新的文献求助10
35秒前
LMY完成签到 ,获得积分10
35秒前
Betty完成签到 ,获得积分10
35秒前
NexusExplorer应助jbq采纳,获得10
36秒前
渔渔完成签到 ,获得积分10
36秒前
37秒前
Tangyartie完成签到 ,获得积分10
37秒前
skbkbe完成签到 ,获得积分10
38秒前
陈俊雷完成签到 ,获得积分0
39秒前
阿苗完成签到,获得积分10
40秒前
神勇的天问完成签到 ,获得积分10
41秒前
41秒前
advance完成签到,获得积分10
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022