Broadband sound absorption using hybrid resonators with embedded necks and micro-perforations in parallel

宽带 谐振器 材料科学 声学 吸收(声学) 声音(地理) 复合材料 计算机科学 光电子学 电信 物理
作者
Hyeonbin Ryoo,Ki Yong Lee,Wonju Jeon
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:211: 111205-111205 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111205
摘要

This study proposes an acoustic metasurface composed of Helmholtz resonators coupled with micro-perforations to achieve perfect sound absorption with a low Q-factor. A key feature of the metasurface is the parallel arrangement of an embedded neck and a micro-perforated panel within a single unit cell. This geometrical configuration facilitates the generation of hybrid resonance, leading to perfect absorption at the target frequency, in which the metasurface dimensions are significantly smaller than the corresponding wavelengths. To guide design choices, a theoretical model is introduced to outline the frequency-dependent effective impedance of the resonators, thereby aiding in specifying the geometric parameters required for impedance matching with the ambient air. Experimental validation for a unit cell fabricated using three-dimensional printing confirms the efficacy of the metasurface at a target frequency of 480 Hz. Supercells comprising multiple resonators are explored to extend the absorption bandwidth, and absorption coefficient exceeding 0.9 over a two-thirds octave range (472–739 Hz) is achieved with a supercell of subwavelength thickness λ/12. A machine learning algorithm based on artificial neural network is applied to further optimize the design. Using the theoretical model as a foundation, these techniques facilitate the identification of an optimal metasurface design, achieving a 90 % absorption band over an octave range (380–790 Hz) with a thickness of λ/15. The metasurfaces introduced herein offer space-efficient alternatives to conventional sound-absorbing materials and hold promise for applications in noise reduction and architectural acoustic design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YamDaamCaa应助N0V1CE采纳,获得50
1秒前
田様应助HelloKun采纳,获得10
1秒前
2秒前
覃纪隆完成签到,获得积分10
3秒前
4秒前
Leukocyte完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
宇宙第一帅完成签到,获得积分10
5秒前
墨菲特关注了科研通微信公众号
5秒前
5秒前
7秒前
SXYYXS完成签到 ,获得积分10
8秒前
9秒前
9秒前
ClaudiaCY发布了新的文献求助10
10秒前
candy发布了新的文献求助10
10秒前
豆芽完成签到,获得积分10
10秒前
pluto应助wml采纳,获得10
11秒前
iui飞完成签到,获得积分10
11秒前
11秒前
IyGnauH完成签到 ,获得积分10
12秒前
12秒前
14秒前
小巧的虔发布了新的文献求助10
14秒前
iui飞发布了新的文献求助10
14秒前
科研通AI2S应助jiang采纳,获得10
14秒前
小青龙完成签到,获得积分10
15秒前
ws完成签到,获得积分20
16秒前
16秒前
天天快乐应助1234采纳,获得10
17秒前
PRIPRO发布了新的文献求助10
17秒前
萧萧完成签到,获得积分10
17秒前
Akim应助小小小何77采纳,获得10
17秒前
shinysparrow应助烟波钓客采纳,获得200
18秒前
hetao286发布了新的文献求助10
18秒前
脑洞疼应助乐观的忘幽采纳,获得10
19秒前
泰裤辣完成签到,获得积分10
19秒前
勤劳太阳发布了新的文献求助10
22秒前
regene完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891