RepDwNet: Lightweight Deep Learning Model for Special Biological Blood Raman Spectra Analysis

拉曼光谱 人工智能 计算机科学 物理 光学
作者
Jiongheng He,Ri‐Gui Zhou,Pengju Ren,Yaochong Li,Shengjun Xiong
出处
期刊:Chemosensors [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 29-29 被引量:1
标识
DOI:10.3390/chemosensors12020029
摘要

The Raman spectroscopy analysis technique has found extensive applications across various disciplines due to its exceptional convenience and efficiency, facilitating the analysis and identification of diverse substances. In recent years, owing to the escalating demand for high-efficiency analytical methods, deep learning models have progressively been introduced into the realm of Raman spectroscopy. However, the application of these models to portable Raman spectrometers has posed a series of challenges due to the computational intensity inherent to deep learning approaches. This paper proposes a lightweight classification model, named RepDwNet, for identifying 28 different types of biological blood. The model integrates advanced techniques such as multi-scale convolutional kernels, depth-wise separable convolutions, and residual connections. These innovations enable the model to capture features at different scales while preserving the coherence of feature data to the maximum extent. The experimental results demonstrate that the average recognition accuracy of the model on the reflective Raman blood dataset and the transmissive Raman blood dataset are 97.31% and 97.10%, respectively. Furthermore, by applying structural reparameterization to compress the well-trained model, it maintains high classification accuracy while significantly reducing the parameter size, thereby enhancing the speed of classification inference. This makes the model more suitable for deployment in portable and mobile devices. Additionally, the proposed model can be extended to various Raman spectroscopy classification scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nuckylin发布了新的文献求助10
1秒前
寸光发布了新的文献求助10
2秒前
4秒前
乙醇发布了新的文献求助10
4秒前
4秒前
Gengar发布了新的文献求助10
5秒前
6秒前
Tancl1235完成签到,获得积分10
6秒前
7秒前
8秒前
生医工小博完成签到,获得积分20
8秒前
壮观以松完成签到,获得积分10
9秒前
小马甲应助Espionage采纳,获得10
10秒前
molotov发布了新的文献求助10
11秒前
健忘捕发布了新的文献求助10
12秒前
希文完成签到,获得积分10
12秒前
biozhp发布了新的文献求助10
13秒前
zack完成签到,获得积分10
16秒前
Nee发布了新的文献求助10
16秒前
Ll_l完成签到,获得积分10
18秒前
19秒前
20秒前
搜集达人应助Tancl1235采纳,获得10
20秒前
21秒前
wang发布了新的文献求助10
21秒前
21秒前
orixero应助zack采纳,获得10
24秒前
无奈初雪完成签到,获得积分10
25秒前
Espionage发布了新的文献求助10
26秒前
上官若男应助jsq采纳,获得10
26秒前
26秒前
大个应助踏雪飞鸿采纳,获得10
27秒前
27秒前
郑159753发布了新的文献求助10
27秒前
顺利毕业发布了新的文献求助10
31秒前
wang完成签到,获得积分10
32秒前
32秒前
33秒前
小蘑菇应助疯狂的炳采纳,获得10
34秒前
英俊的铭应助ZiXuanCui采纳,获得60
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517