RepDwNet: Lightweight Deep Learning Model for Special Biological Blood Raman Spectra Analysis

拉曼光谱 人工智能 计算机科学 物理 光学
作者
Jiongheng He,Ri‐Gui Zhou,Pengju Ren,Yaochong Li,Shengjun Xiong
出处
期刊:Chemosensors [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 29-29 被引量:1
标识
DOI:10.3390/chemosensors12020029
摘要

The Raman spectroscopy analysis technique has found extensive applications across various disciplines due to its exceptional convenience and efficiency, facilitating the analysis and identification of diverse substances. In recent years, owing to the escalating demand for high-efficiency analytical methods, deep learning models have progressively been introduced into the realm of Raman spectroscopy. However, the application of these models to portable Raman spectrometers has posed a series of challenges due to the computational intensity inherent to deep learning approaches. This paper proposes a lightweight classification model, named RepDwNet, for identifying 28 different types of biological blood. The model integrates advanced techniques such as multi-scale convolutional kernels, depth-wise separable convolutions, and residual connections. These innovations enable the model to capture features at different scales while preserving the coherence of feature data to the maximum extent. The experimental results demonstrate that the average recognition accuracy of the model on the reflective Raman blood dataset and the transmissive Raman blood dataset are 97.31% and 97.10%, respectively. Furthermore, by applying structural reparameterization to compress the well-trained model, it maintains high classification accuracy while significantly reducing the parameter size, thereby enhancing the speed of classification inference. This makes the model more suitable for deployment in portable and mobile devices. Additionally, the proposed model can be extended to various Raman spectroscopy classification scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
61414完成签到,获得积分10
1秒前
wjx发布了新的文献求助10
2秒前
2秒前
Lewis完成签到,获得积分10
2秒前
科研三井泽完成签到,获得积分10
2秒前
chu完成签到,获得积分20
2秒前
nancylan应助hnxxangel采纳,获得10
2秒前
Hello应助hnxxangel采纳,获得10
2秒前
我是老大应助hnxxangel采纳,获得10
2秒前
啊七发布了新的文献求助10
2秒前
斯文败类应助hnxxangel采纳,获得10
2秒前
Hello应助hnxxangel采纳,获得10
2秒前
womodou发布了新的文献求助10
2秒前
gsgg完成签到 ,获得积分10
2秒前
syjjj发布了新的文献求助10
3秒前
lmhzxy1314发布了新的文献求助10
3秒前
3秒前
乐乐应助海藻采纳,获得10
3秒前
阔达的访风应助宋立采纳,获得10
3秒前
武明进完成签到,获得积分10
3秒前
4秒前
4秒前
zqq完成签到,获得积分10
4秒前
小吴发布了新的文献求助10
5秒前
刘六完成签到,获得积分10
5秒前
慕青应助小小二采纳,获得30
5秒前
唯喂完成签到,获得积分10
6秒前
6秒前
JamesPei应助樱花慕斯采纳,获得10
6秒前
chen7完成签到,获得积分10
6秒前
5430完成签到,获得积分10
6秒前
tc完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
上官若男应助Icebear采纳,获得50
7秒前
绾绾发布了新的文献求助10
7秒前
所所应助负责的太兰采纳,获得10
7秒前
勤劳惜雪完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261307
求助须知:如何正确求助?哪些是违规求助? 4422429
关于积分的说明 13766330
捐赠科研通 4296949
什么是DOI,文献DOI怎么找? 2357579
邀请新用户注册赠送积分活动 1353993
关于科研通互助平台的介绍 1315165