A Generative Adaptive Convolutional Neural Network with Attention Mechanism for Driver Fatigue Detection with Class-imbalanced and Insufficient Data

机制(生物学) 卷积神经网络 生成语法 班级(哲学) 人工智能 计算机科学 人工神经网络 神经科学 机器学习 心理学 物理 量子力学
作者
Le He,Li Zhang,Qiang Sun,Xin Lin
出处
期刊:Behavioural Brain Research [Elsevier BV]
卷期号:: 114898-114898
标识
DOI:10.1016/j.bbr.2024.114898
摘要

Over the past few years, fatigue driving has emerged as one of the main causes of traffic accidents, necessitating the development of driver fatigue detection systems. However, many existing methods involves tedious manual parameter tunings, a process that is both time-consuming and results in task-specific models. On the other hand, most of the researches on fatigue recognition are based on class-balanced and sufficient data, and effectively “mine” meaningful information from class-imbalanced and insufficient data for fatigue recognition is still a challenge. In this paper, we proposed two novel models, the attention-based residual adaptive multiscale fully convolutional network-long short term memory network (ARMFCN-LSTM), and the Generative ARMFCN-LSTM (GARMFCN-LSTM) aiming to address this issue. ARMFCN-LSTM excels at automatically extracting multiscale representations through adaptive multiscale temporal convolutions, while capturing temporal dependency features through LSTM. GARMFCN-LSTM integrates Wasserstein GAN with gradient penalty (WGAN-GP) into ARMFCN-LSTM to improve driver fatigue detection performance by alleviating data scarcity and addressing class imbalances. Experimental results show that ARMFCN-LSTM achieves the highest classification accuracy of 95.84% in driver fatigue detection on the class-balanced EEG dataset (binary classification), and GARMFCN-LSTM attained an improved classification accuracy of 84.70% on the class-imbalanced EOG dataset (triple classification), surpassing the competing methods. Therefore, the proposed models are promising for further implementations in online driver fatigue detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕容松完成签到,获得积分10
1秒前
1秒前
xwq完成签到,获得积分10
1秒前
luluyang完成签到 ,获得积分10
1秒前
nmm完成签到,获得积分10
1秒前
Dog完成签到,获得积分10
1秒前
火星上凝阳完成签到,获得积分10
2秒前
JohnZhao完成签到,获得积分10
2秒前
陈醒醒完成签到,获得积分10
2秒前
多情怜蕾完成签到,获得积分10
3秒前
星辰大海应助小樊同学采纳,获得10
3秒前
遮宁完成签到,获得积分10
3秒前
明天又是美好的一天完成签到 ,获得积分10
3秒前
还单身的惜文完成签到 ,获得积分10
4秒前
悠夏sunny完成签到,获得积分10
5秒前
文剑武书生完成签到,获得积分10
5秒前
华仔应助TURBO采纳,获得10
6秒前
杰克李李完成签到,获得积分10
6秒前
亮仔发布了新的文献求助10
6秒前
herococa应助fangzhang采纳,获得10
6秒前
木头人完成签到,获得积分10
7秒前
阿伟完成签到,获得积分10
7秒前
小樊同学完成签到,获得积分10
8秒前
湘湘完成签到 ,获得积分10
8秒前
8秒前
lobster完成签到 ,获得积分10
9秒前
钟小凯完成签到 ,获得积分10
9秒前
morena应助包子采纳,获得40
9秒前
sresr完成签到,获得积分10
9秒前
高贵路灯完成签到,获得积分10
10秒前
zj完成签到,获得积分10
10秒前
务实的紫伊完成签到,获得积分10
10秒前
免疫方舟完成签到,获得积分10
11秒前
鲑鱼完成签到 ,获得积分10
11秒前
YY完成签到,获得积分10
12秒前
天真的乌完成签到 ,获得积分10
13秒前
烂漫奇异果完成签到,获得积分10
13秒前
miao完成签到,获得积分10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855