A Generative Adaptive Convolutional Neural Network with Attention Mechanism for Driver Fatigue Detection with Class-imbalanced and Insufficient Data

机制(生物学) 卷积神经网络 生成语法 班级(哲学) 人工智能 计算机科学 人工神经网络 神经科学 机器学习 心理学 物理 量子力学
作者
Le He,Li Zhang,Qiang Sun,Xin Lin
出处
期刊:Behavioural Brain Research [Elsevier]
卷期号:: 114898-114898
标识
DOI:10.1016/j.bbr.2024.114898
摘要

Over the past few years, fatigue driving has emerged as one of the main causes of traffic accidents, necessitating the development of driver fatigue detection systems. However, many existing methods involves tedious manual parameter tunings, a process that is both time-consuming and results in task-specific models. On the other hand, most of the researches on fatigue recognition are based on class-balanced and sufficient data, and effectively “mine” meaningful information from class-imbalanced and insufficient data for fatigue recognition is still a challenge. In this paper, we proposed two novel models, the attention-based residual adaptive multiscale fully convolutional network-long short term memory network (ARMFCN-LSTM), and the Generative ARMFCN-LSTM (GARMFCN-LSTM) aiming to address this issue. ARMFCN-LSTM excels at automatically extracting multiscale representations through adaptive multiscale temporal convolutions, while capturing temporal dependency features through LSTM. GARMFCN-LSTM integrates Wasserstein GAN with gradient penalty (WGAN-GP) into ARMFCN-LSTM to improve driver fatigue detection performance by alleviating data scarcity and addressing class imbalances. Experimental results show that ARMFCN-LSTM achieves the highest classification accuracy of 95.84% in driver fatigue detection on the class-balanced EEG dataset (binary classification), and GARMFCN-LSTM attained an improved classification accuracy of 84.70% on the class-imbalanced EOG dataset (triple classification), surpassing the competing methods. Therefore, the proposed models are promising for further implementations in online driver fatigue detection systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助欣喜的硬币采纳,获得10
1秒前
1秒前
自由元菱完成签到,获得积分10
1秒前
1秒前
鬼荒十三发布了新的文献求助10
1秒前
wanci应助jou采纳,获得10
1秒前
GKPFT完成签到,获得积分10
2秒前
嘿嘿关注了科研通微信公众号
2秒前
36456657应助梓慧采纳,获得10
2秒前
jcm发布了新的文献求助10
2秒前
隐形曼青应助三伏天采纳,获得10
3秒前
3秒前
3秒前
黄大师完成签到,获得积分10
3秒前
思源应助zxp12373采纳,获得10
3秒前
vict完成签到,获得积分10
3秒前
zjt完成签到,获得积分10
3秒前
4秒前
4秒前
ytnju完成签到,获得积分10
4秒前
4秒前
1Liang发布了新的文献求助10
4秒前
5秒前
开朗的丸子给开朗的丸子的求助进行了留言
5秒前
搜集达人应助醉熏的烤鸡采纳,获得10
5秒前
小马甲应助cdbb采纳,获得10
5秒前
小马甲应助fffan采纳,获得10
6秒前
6秒前
6秒前
芝麻开门发布了新的文献求助10
6秒前
6秒前
sxqz完成签到,获得积分10
6秒前
7秒前
ding应助天才罗采纳,获得10
7秒前
善良的ltl发布了新的文献求助10
7秒前
qin完成签到,获得积分10
7秒前
8秒前
章鱼丸子完成签到,获得积分20
8秒前
朴实以晴完成签到,获得积分10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401