A Generative Adaptive Convolutional Neural Network with Attention Mechanism for Driver Fatigue Detection with Class-imbalanced and Insufficient Data

机制(生物学) 卷积神经网络 生成语法 班级(哲学) 人工智能 计算机科学 人工神经网络 神经科学 机器学习 心理学 物理 量子力学
作者
Le He,Li Zhang,Qiang Sun,Xin Lin
出处
期刊:Behavioural Brain Research [Elsevier]
卷期号:: 114898-114898
标识
DOI:10.1016/j.bbr.2024.114898
摘要

Over the past few years, fatigue driving has emerged as one of the main causes of traffic accidents, necessitating the development of driver fatigue detection systems. However, many existing methods involves tedious manual parameter tunings, a process that is both time-consuming and results in task-specific models. On the other hand, most of the researches on fatigue recognition are based on class-balanced and sufficient data, and effectively “mine” meaningful information from class-imbalanced and insufficient data for fatigue recognition is still a challenge. In this paper, we proposed two novel models, the attention-based residual adaptive multiscale fully convolutional network-long short term memory network (ARMFCN-LSTM), and the Generative ARMFCN-LSTM (GARMFCN-LSTM) aiming to address this issue. ARMFCN-LSTM excels at automatically extracting multiscale representations through adaptive multiscale temporal convolutions, while capturing temporal dependency features through LSTM. GARMFCN-LSTM integrates Wasserstein GAN with gradient penalty (WGAN-GP) into ARMFCN-LSTM to improve driver fatigue detection performance by alleviating data scarcity and addressing class imbalances. Experimental results show that ARMFCN-LSTM achieves the highest classification accuracy of 95.84% in driver fatigue detection on the class-balanced EEG dataset (binary classification), and GARMFCN-LSTM attained an improved classification accuracy of 84.70% on the class-imbalanced EOG dataset (triple classification), surpassing the competing methods. Therefore, the proposed models are promising for further implementations in online driver fatigue detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocolu应助斯文涔雨采纳,获得30
1秒前
2秒前
Jason发布了新的文献求助10
5秒前
Winnie完成签到,获得积分10
5秒前
lailai完成签到,获得积分10
5秒前
6秒前
自信沛岚完成签到,获得积分20
11秒前
葱葱不吃葱完成签到 ,获得积分10
13秒前
玛卡巴子完成签到,获得积分20
13秒前
无花果应助yiryir采纳,获得10
14秒前
JamesPei应助机智的凡梦采纳,获得10
15秒前
威武的翠安完成签到 ,获得积分10
17秒前
弯弯完成签到 ,获得积分10
19秒前
研友_ZAyqJZ完成签到,获得积分10
19秒前
20秒前
万能图书馆应助最棒哒采纳,获得10
21秒前
21秒前
22秒前
慕青应助sunny采纳,获得10
22秒前
23秒前
23秒前
奋斗尔安应助凡仔采纳,获得10
23秒前
狗子完成签到,获得积分10
23秒前
巧克力张张包完成签到,获得积分10
24秒前
24秒前
NexusExplorer应助111采纳,获得10
24秒前
苗苗子子完成签到,获得积分10
24秒前
狗子发布了新的文献求助10
26秒前
曹志凡完成签到,获得积分10
26秒前
guk发布了新的文献求助10
26秒前
gaga发布了新的文献求助10
26秒前
woxiangbiye发布了新的文献求助10
27秒前
28秒前
28秒前
29秒前
30秒前
31秒前
31秒前
kk发布了新的文献求助10
31秒前
充电宝应助zhangdoc采纳,获得10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301779
求助须知:如何正确求助?哪些是违规求助? 2936343
关于积分的说明 8477312
捐赠科研通 2610089
什么是DOI,文献DOI怎么找? 1424995
科研通“疑难数据库(出版商)”最低求助积分说明 662239
邀请新用户注册赠送积分活动 646373