趋同(经济学)
放松(心理学)
迭代学习控制
收敛速度
非线性系统
计算机科学
方案(数学)
功能(生物学)
控制理论(社会学)
数学优化
应用数学
数学
控制(管理)
人工智能
数学分析
钥匙(锁)
物理
社会心理学
经济
生物
进化生物学
量子力学
经济增长
计算机安全
心理学
作者
Ding Wang,Yuan Wang,Mingming Zhao,Junfei Qiao
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2023-12-05
卷期号:71 (4): 2224-2228
被引量:1
标识
DOI:10.1109/tcsii.2023.3339577
摘要
In this paper, a novel accelerated Q-learning algorithm is developed to address optimal control problems for discrete-time nonlinear systems. First, the accelerated Q-learning scheme is proposed by introducing the relaxation factor. Note that the relaxation factor leads to the adjustability of the convergence rate. Second, the convergence of the Q-function is analyzed with different relaxation factors. Third, the adjustable Q-learning scheme is developed with guaranteed convergence, which can adaptively change the value of the relaxation factor. Finally, the simulation results demonstrate the effectiveness of this proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI