亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digital twin-assisted dual transfer: a novel information-model adaptation method for rolling bearing fault diagnosis

计算机科学 断层(地质) 方位(导航) 学习迁移 过程(计算) 信息传递 对偶(语法数字) 适应(眼睛) 数据挖掘 人工智能 物理 光学 操作系统 艺术 电信 文学类 地震学 地质学
作者
Zixian Li,Xiaoxi Ding,Zhenzhen Song,Liming Wang,Bo Qin,Wenbin Huang
出处
期刊:Information Fusion [Elsevier]
卷期号:106: 102271-102271 被引量:5
标识
DOI:10.1016/j.inffus.2024.102271
摘要

Rolling bearing fault diagnosis is of great importance to the safety management of mechanical equipment. The scarcity of labelled fault data makes it difficult to adequately perform the training process of intelligent diagnosis models, and this will result in these intelligent models not being effectively and widely used in practice. Although some recent studies have verified that the addition of dynamic model response to the training process will greatly improve the ability of the model with low cost and high efficiency, it is still stuck in poor effect caused by large information distribution difference between dynamic model response and real measured data. Focusing on this issue, a digital twin-assisted dual transfer (DTa-DT) method with information and model adaptation was proposed for rolling bearing fault diagnosis. Different from the traditional digital-analogue driven transfer methods, the proposed DTa-DT aims to simultaneously synthesize data information transfer and feature model transfer together with domain transfer error minimization. In particular, it should be noted that the DTa-DT architecture consists of a dual transfer learning process, including digital twin-driven information transfer (DTd-IT) and digital-analogue-driven model transfer (DAd-MT), where the information is collaborated with the model to improve the integrated transfer diagnosis effect under sampling. On one aspect, with the employment of bearing dynamic model responses, DTd-IT is innovatively designed to establish the transfer of dynamic information and measured information. The information distribution difference between these twin data and real measured data is effetely adjusted with the introduced actual inference components, where the twin data with low information distribution difference can be well fusion generated by the information transfer digital twin (ITDT) model. On the other aspect, considering the truth that there are still small sample cases of real measured data and information distribution differences will affect the quality of the twin data, a digital-analogue driven model transfer (DAd-MT) method is further proposed, where the deep branch transfer network (DBTN) model with improved convolutional neural network (CNN) is used to achieve an accurate fault diagnosis effect with the help of digital twin data. Experiments and wear analysis verified that the proposed DTa-DT can significantly reduce the distribution difference between the dynamic model response and the real measured data, thus achieving low-cost and efficient rolling bearing transfer diagnosis compared to other ten state-of-the-art deep learning models. It can be predicted that the proposed dual transfer architecture provides more opportunities for the practical application of intelligent fault diagnosis under small sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
脑洞疼应助YUYUYU采纳,获得10
16秒前
啊呜发布了新的文献求助10
17秒前
FashionBoy应助科研通管家采纳,获得10
39秒前
寻道图强应助科研通管家采纳,获得30
39秒前
打打应助顺利山柏采纳,获得10
48秒前
zkwgly完成签到 ,获得积分10
54秒前
Jenny完成签到,获得积分10
55秒前
1分钟前
云雀完成签到,获得积分10
1分钟前
云雀发布了新的文献求助30
1分钟前
2分钟前
Aira发布了新的文献求助10
2分钟前
研友_ZbP41L完成签到 ,获得积分10
2分钟前
2分钟前
Steve完成签到 ,获得积分10
2分钟前
顺利山柏发布了新的文献求助10
2分钟前
寻道图强应助科研通管家采纳,获得30
2分钟前
2分钟前
寻道图强应助科研通管家采纳,获得30
2分钟前
我是老大应助科研通管家采纳,获得20
2分钟前
2分钟前
丘比特应助顺利山柏采纳,获得10
2分钟前
123456完成签到,获得积分10
3分钟前
123456发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Joven发布了新的文献求助10
3分钟前
容若完成签到,获得积分10
3分钟前
顺利山柏发布了新的文献求助10
3分钟前
Joven完成签到,获得积分20
3分钟前
NexusExplorer应助科研小刘采纳,获得10
3分钟前
FashionBoy应助啊呜采纳,获得10
3分钟前
科研通AI2S应助科研小刘采纳,获得10
4分钟前
4分钟前
XZM发布了新的文献求助50
4分钟前
4分钟前
啊呜发布了新的文献求助10
4分钟前
啊呜完成签到,获得积分20
4分钟前
4分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314