Digital twin-assisted dual transfer: A novel information-model adaptation method for rolling bearing fault diagnosis

计算机科学 断层(地质) 方位(导航) 学习迁移 过程(计算) 信息传递 对偶(语法数字) 适应(眼睛) 数据挖掘 人工智能 文学类 地质学 艺术 物理 地震学 光学 操作系统 电信
作者
Zixian Li,Xiaoxi Ding,Zhenzhen Song,Liming Wang,Bo Qin,Wenbin Huang
出处
期刊:Information Fusion [Elsevier]
卷期号:106: 102271-102271 被引量:64
标识
DOI:10.1016/j.inffus.2024.102271
摘要

Rolling bearing fault diagnosis is of great importance to the safety management of mechanical equipment. The scarcity of labelled fault data makes it difficult to adequately perform the training process of intelligent diagnosis models, and this will result in these intelligent models not being effectively and widely used in practice. Although some recent studies have verified that the addition of dynamic model response to the training process will greatly improve the ability of the model with low cost and high efficiency, it is still stuck in poor effect caused by large information distribution difference between dynamic model response and real measured data. Focusing on this issue, a digital twin-assisted dual transfer (DTa-DT) method with information and model adaptation was proposed for rolling bearing fault diagnosis. Different from the traditional digital-analogue driven transfer methods, the proposed DTa-DT aims to simultaneously synthesize data information transfer and feature model transfer together with domain transfer error minimization. In particular, it should be noted that the DTa-DT architecture consists of a dual transfer learning process, including digital twin-driven information transfer (DTd-IT) and digital-analogue-driven model transfer (DAd-MT), where the information is collaborated with the model to improve the integrated transfer diagnosis effect under sampling. On one aspect, with the employment of bearing dynamic model responses, DTd-IT is innovatively designed to establish the transfer of dynamic information and measured information. The information distribution difference between these twin data and real measured data is effetely adjusted with the introduced actual inference components, where the twin data with low information distribution difference can be well fusion generated by the information transfer digital twin (ITDT) model. On the other aspect, considering the truth that there are still small sample cases of real measured data and information distribution differences will affect the quality of the twin data, a digital-analogue driven model transfer (DAd-MT) method is further proposed, where the deep branch transfer network (DBTN) model with improved convolutional neural network (CNN) is used to achieve an accurate fault diagnosis effect with the help of digital twin data. Experiments and wear analysis verified that the proposed DTa-DT can significantly reduce the distribution difference between the dynamic model response and the real measured data, thus achieving low-cost and efficient rolling bearing transfer diagnosis compared to other ten state-of-the-art deep learning models. It can be predicted that the proposed dual transfer architecture provides more opportunities for the practical application of intelligent fault diagnosis under small sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
大个应助火烧屁屁采纳,获得30
2秒前
2秒前
2秒前
kkjust发布了新的文献求助10
3秒前
Hwj发布了新的文献求助10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得30
5秒前
大个应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
lkk完成签到,获得积分10
6秒前
酷波er应助JINtian采纳,获得10
7秒前
bkagyin应助王某采纳,获得10
7秒前
NexusExplorer应助单纯的柚子采纳,获得10
9秒前
linlin发布了新的文献求助10
9秒前
9秒前
zsreed关注了科研通微信公众号
9秒前
fyukgfdyifotrf完成签到,获得积分10
9秒前
10秒前
10秒前
满意妙梦发布了新的文献求助10
11秒前
CodeCraft应助PubMed556采纳,获得10
11秒前
sun完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599265
求助须知:如何正确求助?哪些是违规求助? 4684848
关于积分的说明 14836659
捐赠科研通 4667343
什么是DOI,文献DOI怎么找? 2537858
邀请新用户注册赠送积分活动 1505330
关于科研通互助平台的介绍 1470764