清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Digital twin-assisted dual transfer: a novel information-model adaptation method for rolling bearing fault diagnosis

计算机科学 断层(地质) 方位(导航) 学习迁移 过程(计算) 信息传递 对偶(语法数字) 适应(眼睛) 数据挖掘 人工智能 物理 光学 操作系统 艺术 电信 文学类 地震学 地质学
作者
Zixian Li,Xiaoxi Ding,Zhenzhen Song,Liming Wang,Bo Qin,Wenbin Huang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:: 102271-102271 被引量:23
标识
DOI:10.1016/j.inffus.2024.102271
摘要

Rolling bearing fault diagnosis is of great importance to the safety management of mechanical equipment. The scarcity of labelled fault data makes it difficult to adequately perform the training process of intelligent diagnosis models, and this will result in these intelligent models not being effectively and widely used in practice. Although some recent studies have verified that the addition of dynamic model response to the training process will greatly improve the ability of the model with low cost and high efficiency, it is still stuck in poor effect caused by large information distribution difference between dynamic model response and real measured data. Focusing on this issue, a digital twin-assisted dual transfer (DTa-DT) method with information and model adaptation was proposed for rolling bearing fault diagnosis. Different from the traditional digital-analogue driven transfer methods, the proposed DTa-DT aims to simultaneously synthesize data information transfer and feature model transfer together with domain transfer error minimization. In particular, it should be noted that the DTa-DT architecture consists of a dual transfer learning process, including digital twin-driven information transfer (DTd-IT) and digital-analogue-driven model transfer (DAd-MT), where the information is collaborated with the model to improve the integrated transfer diagnosis effect under sampling. On one aspect, with the employment of bearing dynamic model responses, DTd-IT is innovatively designed to establish the transfer of dynamic information and measured information. The information distribution difference between these twin data and real measured data is effetely adjusted with the introduced actual inference components, where the twin data with low information distribution difference can be well fusion generated by the information transfer digital twin (ITDT) model. On the other aspect, considering the truth that there are still small sample cases of real measured data and information distribution differences will affect the quality of the twin data, a digital-analogue driven model transfer (DAd-MT) method is further proposed, where the deep branch transfer network (DBTN) model with improved convolutional neural network (CNN) is used to achieve an accurate fault diagnosis effect with the help of digital twin data. Experiments and wear analysis verified that the proposed DTa-DT can significantly reduce the distribution difference between the dynamic model response and the real measured data, thus achieving low-cost and efficient rolling bearing transfer diagnosis compared to other ten state-of-the-art deep learning models. It can be predicted that the proposed dual transfer architecture provides more opportunities for the practical application of intelligent fault diagnosis under small sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
liuyamei完成签到,获得积分10
17秒前
优秀的dd完成签到 ,获得积分10
27秒前
liuyamei发布了新的文献求助10
27秒前
眼睛大的电脑完成签到 ,获得积分10
34秒前
38秒前
刘刘完成签到 ,获得积分10
53秒前
朴素的山蝶完成签到 ,获得积分10
1分钟前
1分钟前
aiyawy完成签到 ,获得积分10
1分钟前
柯伊达完成签到 ,获得积分10
2分钟前
shezhinicheng完成签到 ,获得积分10
2分钟前
Hello应助asdf采纳,获得30
2分钟前
2分钟前
健康的彩虹完成签到,获得积分10
2分钟前
mzhang2完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
Raul完成签到 ,获得积分10
3分钟前
mr完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
axiao完成签到,获得积分10
5分钟前
asdf发布了新的文献求助30
5分钟前
5分钟前
axiao发布了新的文献求助10
5分钟前
asdf完成签到,获得积分10
5分钟前
CodeCraft应助whiter采纳,获得10
5分钟前
6分钟前
6分钟前
whiter发布了新的文献求助10
6分钟前
whiter完成签到,获得积分10
6分钟前
lanxinge完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792903
邀请新用户注册赠送积分活动 874184
科研通“疑难数据库(出版商)”最低求助积分说明 804229