An All-digital Compute-in-memory FPGA Architecture for Deep Learning Acceleration

现场可编程门阵列 计算机科学 建筑 加速度 深度学习 计算机体系结构 嵌入式系统 并行计算 人工智能 经典力学 物理 艺术 视觉艺术
作者
Yonggen Li,Xin Li,Haibin Shen,Jicong Fan,Yanfeng Xu,Kejie Huang
出处
期刊:ACM Transactions on Reconfigurable Technology and Systems [Association for Computing Machinery]
卷期号:17 (1): 1-27
标识
DOI:10.1145/3640469
摘要

Field Programmable Gate Array (FPGA) is a versatile and programmable hardware platform, which makes it a promising candidate for accelerating Deep Neural Networks (DNNs). However, FPGA’s computing energy efficiency is low due to the domination of energy consumption by interconnect data movement. In this article, we propose an all-digital Compute-in-memory FPGA architecture for deep learning acceleration. Furthermore, we present a bit-serial computing circuit of the Digital CIM core for accelerating vector-matrix multiplication (VMM) operations. A Network-CIM-deployer ( NCIMD ) is also developed to support automatic deployment and mapping of DNN networks. NCIMD provides a user-friendly API of DNN models in Caffe format. Meanwhile, we introduce a Weight-stationary dataflow and describe the method of mapping a single layer of the network to the CIM array in the architecture. We conduct experimental tests on the proposed FPGA architecture in the field of Deep Learning (DL), as well as in non-DL fields, using different architectural layouts and mapping strategies. We also compare the results with the conventional FPGA architecture. The experimental results show that compared to the conventional FPGA architecture, the energy efficiency can achieve a maximum speedup of 16.1×, while the latency can decrease up to 40% in our proposed CIM FPGA architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
1秒前
1秒前
了然完成签到 ,获得积分10
2秒前
jxp完成签到,获得积分10
2秒前
jojo完成签到 ,获得积分10
3秒前
3秒前
勤劳落雁完成签到 ,获得积分10
3秒前
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
赘婿应助Quzhengkai采纳,获得10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
李爱国应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
调研昵称发布了新的文献求助10
8秒前
CodeCraft应助清新的苑博采纳,获得10
9秒前
所所应助Chen采纳,获得10
10秒前
12秒前
12秒前
goldenfleece发布了新的文献求助10
12秒前
怕黑的钥匙完成签到 ,获得积分10
12秒前
zhangsf88完成签到,获得积分10
12秒前
科研通AI5应助科研小能手采纳,获得10
12秒前
乐乐应助热情芷荷采纳,获得10
13秒前
想发sci完成签到,获得积分10
13秒前
kaifeiQi完成签到,获得积分10
13秒前
共享精神应助Elsa采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808