Research on LIBS online monitoring criteria for aircraft skin laser paint removal based on OPLS-DA

偏最小二乘回归 主成分分析 线性判别分析 激光诱导击穿光谱 计算机科学 激光器 人工智能 化学计量学 遥感 光学 机器学习 物理 地质学
作者
Shaolong Li,Yikai Yang,Shaohua Gao,Dehui Lin,Li Guo,Yue Hu,Wenfeng Yang
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (3): 4122-4122 被引量:2
标识
DOI:10.1364/oe.511945
摘要

Online monitoring technology plays a pivotal role in advancing the utilization of laser paint removal in aircraft maintenance and automation. Through the utilization of a high-frequency infrared pulse laser paint removal laser-induced breakdown spectroscopy (LIBS) online monitoring platform, this research conducted data collection encompassing 60 sets of LIBS spectra during the paint removal process. Classification and identification models were established employing principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). These models served as the foundation for creating criteria and rules for the online LIBS monitoring of the controlled paint removal process for aircraft skin. In this research, 12 selected characteristic spectral lines were used to construct the OPLS-DA model, with a predictive root mean square error (RMSEP) of 0.2873. Both full spectrum and feature spectral line data achieved a predictive accuracy of 94.4%. The selection of feature spectral lines maintains predictive performance while significantly reducing the amount of input data. Consequently, this research offers a methodological reference for further advancements in online monitoring technology for laser paint removal in aircraft skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无花果应助sunzhiyu233采纳,获得10
1秒前
韭黄完成签到,获得积分20
1秒前
2秒前
诚c发布了新的文献求助10
2秒前
自然秋柳完成签到 ,获得积分10
2秒前
我是老大应助经法采纳,获得10
2秒前
默默的皮牙子应助经法采纳,获得10
2秒前
orixero应助经法采纳,获得10
2秒前
小马甲应助经法采纳,获得10
2秒前
柚子成精应助经法采纳,获得10
3秒前
小蘑菇应助经法采纳,获得10
3秒前
深情安青应助经法采纳,获得10
3秒前
李爱国应助经法采纳,获得10
3秒前
共享精神应助经法采纳,获得10
3秒前
yyyyyy完成签到 ,获得积分10
3秒前
LL完成签到,获得积分10
3秒前
ziyiziyi发布了新的文献求助10
4秒前
哈哈哈haha发布了新的文献求助40
4秒前
4秒前
啵乐乐完成签到,获得积分10
5秒前
哈哈完成签到,获得积分20
5秒前
6秒前
logic完成签到,获得积分10
6秒前
岁月轮回发布了新的文献求助10
6秒前
小离发布了新的文献求助10
6秒前
CodeCraft应助艺玲采纳,获得10
6秒前
chenjyuu完成签到,获得积分10
7秒前
韭黄发布了新的文献求助10
7秒前
7秒前
子车雁开完成签到,获得积分10
7秒前
8秒前
8秒前
故意的傲玉应助经法采纳,获得10
9秒前
上官若男应助经法采纳,获得10
9秒前
buno应助经法采纳,获得10
9秒前
1111应助经法采纳,获得10
9秒前
Lucas应助经法采纳,获得10
9秒前
Jasper应助经法采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759