Improving forest above-ground biomass estimation using genetic-based feature selection from Sentinel-1 and Sentinel-2 data (case study of the Noor forest area in Iran)

随机森林 环境科学 生物量(生态学) 特征选择 遥感 合成孔径雷达 植被(病理学) 选择(遗传算法) 计算机科学 地质学 生态学 机器学习 生物 医学 病理
作者
Armin Moghimi,Ava Tavakoli Darestani,Nikrouz Mostofi,Mehdi Fathi,Meisam Amani
出处
期刊:kuwait journal of science [Elsevier BV]
卷期号:51 (2): 100159-100159 被引量:1
标识
DOI:10.1016/j.kjs.2023.11.008
摘要

Biomass holds great importance in the environment, as it not only allows us to measure the carbon stored in forests but also facilitates the assessment of biodiversity and the evaluation of ecological integrity within these crucial ecosystems. In this study, we employed a Genetic Algorithm (GA) to estimate forest Above-Ground Biomass (AGB) by selecting the most applicable features from both Sentinel-2 optical and Sentinel-1 Synthetic Aperture Radar (SAR) images in the Noor forest. The study area was divided into four distinct regions (north, near north, middle, and south), and each region was documented with 100 sample plots through fieldwork to enable comprehensive analysis. In our workflow, Sentinel-2-derived features (i.e., spectral bands, vegetation indices (VIs), soil indices (SIs), and water indices (WIs), along with Sentinel-1 SAR features were initially extracted. Subsequently, GA was employed to select the most optimal features among them within both Random Forest (RF) and Multiple Linear Regression (MLR) models, leading to enhanced accuracy in the forest AGB estimation process. The experimental results demonstrated that the RF model outperformed the MLR model in estimating forest AGB. Furthermore, incorporating GA-based feature selection substantially improved the accuracy of both models, resulting in more dependable AGB estimations. The selected features from the combined Sentinel-1 and Sentinel-2 data also provided the best AGB estimation, surpassing the individual use of each dataset. The selected features from Sentinel-2 particularly played a more substantial role in achieving this overall enhanced performance in AGB estimation. The AGB estimates based on GA-RF were more accurate in all cases, with an average coefficient of determination (R2) of 0.5 and average RMSE of 13.17 Mg ha−1, while the MLR-based estimates were less accurate, with an average R2 value lower than 0.3 and average RMSE higher than 16 Mg ha−1. Furthermore, the GA-RF model selected a wider variety of features including spectral bands, indices, and SAR features compared to GA-MLR, resulting in accurate AGB estimation in the Noor forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
幸运的羔羊完成签到,获得积分10
1秒前
1秒前
sanages完成签到,获得积分10
1秒前
倒霉蛋完成签到,获得积分10
1秒前
心灵美的修洁完成签到 ,获得积分10
1秒前
桐桐应助peng采纳,获得10
2秒前
量子星尘发布了新的文献求助30
2秒前
游大侠完成签到,获得积分10
3秒前
劳达完成签到,获得积分10
3秒前
背后海亦应助天真的雅绿采纳,获得20
3秒前
鸽子汤完成签到 ,获得积分10
3秒前
kk完成签到,获得积分10
3秒前
alan发布了新的文献求助10
3秒前
寒冷诗霜应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
lin完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
萧水白应助科研通管家采纳,获得50
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
搬砖美少女完成签到,获得积分10
4秒前
所所应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
彬彬应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953650
求助须知:如何正确求助?哪些是违规求助? 3499409
关于积分的说明 11095552
捐赠科研通 3229987
什么是DOI,文献DOI怎么找? 1785841
邀请新用户注册赠送积分活动 869592
科研通“疑难数据库(出版商)”最低求助积分说明 801479