Improving forest above-ground biomass estimation using genetic-based feature selection from Sentinel-1 and Sentinel-2 data (case study of the Noor forest area in Iran)

随机森林 环境科学 生物量(生态学) 特征选择 遥感 合成孔径雷达 植被(病理学) 选择(遗传算法) 计算机科学 地质学 生态学 机器学习 生物 医学 病理
作者
Armin Moghimi,Ava Tavakoli Darestani,Nikrouz Mostofi,Mehdi Fathi,Meisam Amani
出处
期刊:kuwait journal of science [Kuwait Journal of Science]
卷期号:51 (2): 100159-100159 被引量:1
标识
DOI:10.1016/j.kjs.2023.11.008
摘要

Biomass holds great importance in the environment, as it not only allows us to measure the carbon stored in forests but also facilitates the assessment of biodiversity and the evaluation of ecological integrity within these crucial ecosystems. In this study, we employed a Genetic Algorithm (GA) to estimate forest Above-Ground Biomass (AGB) by selecting the most applicable features from both Sentinel-2 optical and Sentinel-1 Synthetic Aperture Radar (SAR) images in the Noor forest. The study area was divided into four distinct regions (north, near north, middle, and south), and each region was documented with 100 sample plots through fieldwork to enable comprehensive analysis. In our workflow, Sentinel-2-derived features (i.e., spectral bands, vegetation indices (VIs), soil indices (SIs), and water indices (WIs), along with Sentinel-1 SAR features were initially extracted. Subsequently, GA was employed to select the most optimal features among them within both Random Forest (RF) and Multiple Linear Regression (MLR) models, leading to enhanced accuracy in the forest AGB estimation process. The experimental results demonstrated that the RF model outperformed the MLR model in estimating forest AGB. Furthermore, incorporating GA-based feature selection substantially improved the accuracy of both models, resulting in more dependable AGB estimations. The selected features from the combined Sentinel-1 and Sentinel-2 data also provided the best AGB estimation, surpassing the individual use of each dataset. The selected features from Sentinel-2 particularly played a more substantial role in achieving this overall enhanced performance in AGB estimation. The AGB estimates based on GA-RF were more accurate in all cases, with an average coefficient of determination (R2) of 0.5 and average RMSE of 13.17 Mg ha−1, while the MLR-based estimates were less accurate, with an average R2 value lower than 0.3 and average RMSE higher than 16 Mg ha−1. Furthermore, the GA-RF model selected a wider variety of features including spectral bands, indices, and SAR features compared to GA-MLR, resulting in accurate AGB estimation in the Noor forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzznznnn发布了新的文献求助10
刚刚
芳芳发布了新的文献求助10
1秒前
行程发布了新的文献求助10
2秒前
一指墨发布了新的文献求助10
2秒前
2秒前
4秒前
搜集达人应助钮祜禄则天采纳,获得10
6秒前
乐乐应助zzz采纳,获得10
7秒前
yangbinsci0827完成签到,获得积分10
8秒前
KKKZ完成签到,获得积分10
9秒前
行程完成签到,获得积分10
10秒前
不安青牛应助杨阿帆采纳,获得10
10秒前
大模型应助Sun采纳,获得10
10秒前
10秒前
一指墨完成签到,获得积分10
12秒前
gsx应助月亮采纳,获得10
13秒前
桐桐应助laoxiaozi采纳,获得10
13秒前
沉默飞珍发布了新的文献求助10
14秒前
mumu完成签到 ,获得积分10
14秒前
nowfitness完成签到,获得积分10
15秒前
15秒前
飘落完成签到,获得积分10
15秒前
aaaaa发布了新的文献求助10
16秒前
16秒前
16秒前
三硕发布了新的文献求助30
17秒前
18秒前
Aries完成签到 ,获得积分10
19秒前
Yy完成签到 ,获得积分10
19秒前
19秒前
阿乐发布了新的文献求助10
19秒前
Lee完成签到,获得积分10
20秒前
飘落发布了新的文献求助10
21秒前
zzz发布了新的文献求助10
22秒前
22秒前
23秒前
呆萌的兔子应助ysynqqr采纳,获得10
23秒前
23秒前
24秒前
CodeCraft应助xiongyh10采纳,获得10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260523
求助须知:如何正确求助?哪些是违规求助? 2901713
关于积分的说明 8316694
捐赠科研通 2571240
什么是DOI,文献DOI怎么找? 1396950
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632040