Clustering Enhanced Multiplex Graph Contrastive Representation Learning

聚类分析 计算机科学 图形 特征学习 人工智能 关系(数据库) 代表(政治) 利用 机器学习 自然语言处理 理论计算机科学 数据挖掘 政治学 计算机安全 政治 法学
作者
Ruiwen Yuan,Yongqiang Tang,Yajing Wu,Wensheng Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 1341-1355 被引量:8
标识
DOI:10.1109/tnnls.2023.3334751
摘要

Multiplex graph representation learning has attracted considerable attention due to its powerful capacity to depict multiple relation types between nodes. Previous methods generally learn representations of each relation-based subgraph and then aggregate them into final representations. Despite the enormous success, they commonly encounter two challenges: 1) the latent community structure is overlooked and 2) consistent and complementary information across relation types remains largely unexplored. To address these issues, we propose a clustering-enhanced multiplex graph contrastive representation learning model (CEMR). In CEMR, by formulating each relation type as a view, we propose a multiview graph clustering framework to discover the potential community structure, which promotes representations to incorporate global semantic correlations. Moreover, under the proposed multiview clustering framework, we develop cross-view contrastive learning and cross-view cosupervision modules to explore consistent and complementary information in different views, respectively. Specifically, the cross-view contrastive learning module equipped with a novel negative pairs selecting mechanism enables the view-specific representations to extract common knowledge across views. The cross-view cosupervision module exploits the high-confidence complementary information in one view to guide low-confidence clustering in other views by contrastive learning. Comprehensive experiments on four datasets confirm the superiority of our CEMR when compared to the state-of-the-art rivals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llwxx完成签到,获得积分10
1秒前
1秒前
RJ发布了新的文献求助10
1秒前
3秒前
3秒前
鲸鱼打滚发布了新的文献求助10
3秒前
科研通AI2S应助cui18采纳,获得10
3秒前
Changfh完成签到 ,获得积分10
3秒前
4秒前
4秒前
汉堡包应助浪费青春传奇采纳,获得10
4秒前
4秒前
薯条发布了新的文献求助10
5秒前
5秒前
deer发布了新的文献求助10
5秒前
Bertha完成签到,获得积分10
5秒前
Novoa发布了新的文献求助10
5秒前
5秒前
万能图书馆应助ZXC采纳,获得10
5秒前
6秒前
搜集达人应助优美的唇彩采纳,获得10
7秒前
cx完成签到 ,获得积分10
7秒前
kai9712应助Ting采纳,获得20
8秒前
噜lu发布了新的文献求助10
8秒前
无花果应助wch采纳,获得10
9秒前
Hello应助冷静的慕青采纳,获得10
9秒前
善学以致用应助薯条采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
肉肉发布了新的文献求助10
10秒前
YUE发布了新的文献求助10
11秒前
Judy发布了新的文献求助10
12秒前
刘晚柠完成签到,获得积分10
12秒前
panda完成签到,获得积分10
12秒前
13秒前
13秒前
小二郎应助ee采纳,获得10
13秒前
gapper发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082