Clustering Enhanced Multiplex Graph Contrastive Representation Learning

聚类分析 计算机科学 图形 特征学习 人工智能 关系(数据库) 代表(政治) 利用 机器学习 自然语言处理 理论计算机科学 数据挖掘 政治学 计算机安全 政治 法学
作者
Ruiwen Yuan,Yongqiang Tang,Yajing Wu,Wensheng Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2023.3334751
摘要

Multiplex graph representation learning has attracted considerable attention due to its powerful capacity to depict multiple relation types between nodes. Previous methods generally learn representations of each relation-based subgraph and then aggregate them into final representations. Despite the enormous success, they commonly encounter two challenges: 1) the latent community structure is overlooked and 2) consistent and complementary information across relation types remains largely unexplored. To address these issues, we propose a clustering-enhanced multiplex graph contrastive representation learning model (CEMR). In CEMR, by formulating each relation type as a view, we propose a multiview graph clustering framework to discover the potential community structure, which promotes representations to incorporate global semantic correlations. Moreover, under the proposed multiview clustering framework, we develop cross-view contrastive learning and cross-view cosupervision modules to explore consistent and complementary information in different views, respectively. Specifically, the cross-view contrastive learning module equipped with a novel negative pairs selecting mechanism enables the view-specific representations to extract common knowledge across views. The cross-view cosupervision module exploits the high-confidence complementary information in one view to guide low-confidence clustering in other views by contrastive learning. Comprehensive experiments on four datasets confirm the superiority of our CEMR when compared to the state-of-the-art rivals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烂漫的小熊猫完成签到 ,获得积分10
1秒前
共享精神应助somin采纳,获得10
1秒前
123发布了新的文献求助10
2秒前
希望天下0贩的0应助jery采纳,获得10
2秒前
毛舒敏完成签到,获得积分10
2秒前
大模型应助leeleetyo采纳,获得10
2秒前
毛豆应助hyjhhy采纳,获得10
2秒前
溪听发布了新的文献求助10
2秒前
yaoyh_gc发布了新的文献求助10
2秒前
毛豆应助江辰戏采纳,获得10
3秒前
3秒前
文竹发布了新的文献求助10
4秒前
4秒前
彭于彦祖应助阳谷光采纳,获得30
4秒前
5秒前
mayday完成签到,获得积分10
5秒前
LF完成签到,获得积分10
5秒前
月亮完成签到,获得积分10
6秒前
万能图书馆应助顺顺采纳,获得20
6秒前
大个应助高贵路灯采纳,获得10
6秒前
Akim应助Meiyu采纳,获得10
6秒前
跳跃的八宝粥完成签到,获得积分10
7秒前
7秒前
gaohui发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI2S应助动听的谷秋采纳,获得10
9秒前
三木完成签到 ,获得积分10
10秒前
10秒前
10秒前
在水一方应助MS903采纳,获得10
10秒前
11秒前
gyx发布了新的文献求助10
12秒前
12秒前
快学吧发布了新的文献求助10
12秒前
坦率的跳跳糖完成签到 ,获得积分10
12秒前
一二三四完成签到,获得积分10
12秒前
合适德天完成签到,获得积分10
12秒前
平常无颜发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557