Clustering Enhanced Multiplex Graph Contrastive Representation Learning

聚类分析 计算机科学 图形 特征学习 人工智能 关系(数据库) 代表(政治) 利用 机器学习 自然语言处理 理论计算机科学 数据挖掘 政治学 计算机安全 政治 法学
作者
Ruiwen Yuan,Yongqiang Tang,Yajing Wu,Wensheng Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tnnls.2023.3334751
摘要

Multiplex graph representation learning has attracted considerable attention due to its powerful capacity to depict multiple relation types between nodes. Previous methods generally learn representations of each relation-based subgraph and then aggregate them into final representations. Despite the enormous success, they commonly encounter two challenges: 1) the latent community structure is overlooked and 2) consistent and complementary information across relation types remains largely unexplored. To address these issues, we propose a clustering-enhanced multiplex graph contrastive representation learning model (CEMR). In CEMR, by formulating each relation type as a view, we propose a multiview graph clustering framework to discover the potential community structure, which promotes representations to incorporate global semantic correlations. Moreover, under the proposed multiview clustering framework, we develop cross-view contrastive learning and cross-view cosupervision modules to explore consistent and complementary information in different views, respectively. Specifically, the cross-view contrastive learning module equipped with a novel negative pairs selecting mechanism enables the view-specific representations to extract common knowledge across views. The cross-view cosupervision module exploits the high-confidence complementary information in one view to guide low-confidence clustering in other views by contrastive learning. Comprehensive experiments on four datasets confirm the superiority of our CEMR when compared to the state-of-the-art rivals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
琉璃完成签到,获得积分10
1秒前
卢小军完成签到,获得积分10
2秒前
3秒前
木安完成签到,获得积分10
3秒前
4秒前
迅速泽洋完成签到,获得积分10
4秒前
jiajia完成签到,获得积分10
4秒前
飘逸怜菡完成签到 ,获得积分10
4秒前
麦子发布了新的文献求助10
4秒前
老实天真发布了新的文献求助10
4秒前
4秒前
我是老大应助Ran采纳,获得10
5秒前
WUT完成签到,获得积分10
5秒前
Willow完成签到,获得积分10
6秒前
小科发布了新的文献求助10
6秒前
7秒前
研友_8D3QVZ完成签到,获得积分10
7秒前
8秒前
xiaoyu完成签到,获得积分10
8秒前
8秒前
zgnh完成签到,获得积分10
8秒前
大方的若山完成签到,获得积分10
8秒前
牧童完成签到,获得积分10
9秒前
9秒前
怡然依柔完成签到,获得积分10
9秒前
圆圆发布了新的文献求助10
9秒前
10秒前
余鹰完成签到,获得积分10
10秒前
狂野世立发布了新的文献求助10
10秒前
尘缘完成签到 ,获得积分10
12秒前
蘑菇完成签到,获得积分10
12秒前
yyz完成签到,获得积分20
13秒前
你猜发布了新的文献求助10
13秒前
14秒前
Kelly1426完成签到,获得积分10
14秒前
lps123456完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118