Determining optimal location and size of PEV fast-charging stations in coupled transportation and power distribution networks considering power loss and traffic congestion

功率(物理) 计算机科学 汽车工程 尺寸 交流电源 还原(数学) 交通拥挤 电压 模拟 工程类 电气工程 运输工程 数学 艺术 物理 几何学 量子力学 视觉艺术
作者
Fatemeh Keramati,Hamid Reza Mohammadi,Gholam Reza Shiran
出处
期刊:Sustainable Energy, Grids and Networks [Elsevier BV]
卷期号:38: 101268-101268 被引量:5
标识
DOI:10.1016/j.segan.2023.101268
摘要

The placement and sizing of plug-in electric vehicle fast-charging stations (PEVF-CS) can significantly influence traffic flow in urban transportation networks. Consequently, suboptimal choices regarding the location and size of PEVF-CSs may lead to increasing travel time and traffic congestion in transportation networks and deterioration of the power quality indexes in power distribution networks. Also, each PEVF-CS is equipped with power electronic converters that can be used as power line conditioners and active filters to compensate for the reactive power and current harmonic components due to nonlinear loads and reduce the power loss. Thus, PEVF-CSs can improve the voltage profile, decrease voltage THD, and reduce the power loss in power distribution networks. Accordingly, this paper develops a mixed-integer linear programming model (MILP) to determine the optimal locations and sizes of PEVF-CSs. In addition, the proposed model considers traffic congestion and power quality in the coupled transportation and power distribution networks. The model considers various load profiles and origin-destination demands to address the different operational aspects of transportation and power distribution networks. The main features of the proposed model are 1- road congestion reduction, 2- traveling time reduction, 3- power loss reduction, and 4- power quality improvement. The proposed model is implemented using GAMS software and applied to different-scale test systems in different scenarios. The results show that the proposed method decreases traffic congestion and improves power quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Ashmitte采纳,获得10
1秒前
wxt完成签到 ,获得积分10
3秒前
哈哈哈哈怪完成签到,获得积分10
5秒前
5秒前
5秒前
搜集达人应助SkyTsai采纳,获得10
5秒前
DrWang发布了新的文献求助10
5秒前
科研通AI2S应助lslslslsllss采纳,获得10
6秒前
无语的怜梦完成签到,获得积分10
9秒前
王富贵完成签到,获得积分10
10秒前
风评发布了新的文献求助10
11秒前
琳琳发布了新的文献求助10
11秒前
zengchunhua完成签到,获得积分10
12秒前
12秒前
丘比特应助如意枫叶采纳,获得10
13秒前
搜集达人应助仰望苍穹采纳,获得10
13秒前
Lucas应助念姬采纳,获得10
14秒前
14秒前
贝贝发布了新的文献求助10
15秒前
聪慧的凝海完成签到 ,获得积分10
16秒前
SYLH应助toniki采纳,获得20
16秒前
16秒前
17秒前
风评完成签到,获得积分10
18秒前
JIE发布了新的文献求助10
20秒前
awei完成签到,获得积分10
24秒前
白水最可口完成签到,获得积分10
25秒前
28秒前
awei发布了新的文献求助10
28秒前
28秒前
29秒前
lilacs完成签到 ,获得积分10
29秒前
Hazellee发布了新的文献求助10
29秒前
bkagyin应助高佳智采纳,获得10
30秒前
30秒前
30秒前
洪山老狗发布了新的文献求助10
31秒前
琳琳完成签到,获得积分10
31秒前
阿涛完成签到,获得积分10
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966052
求助须知:如何正确求助?哪些是违规求助? 3511373
关于积分的说明 11158054
捐赠科研通 3245980
什么是DOI,文献DOI怎么找? 1793250
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311