亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A malware detection model based on imbalanced heterogeneous graph embeddings

计算机科学 恶意软件 数据挖掘 分类器(UML) 图形 人工智能 机器学习 Android(操作系统) 理论计算机科学 计算机安全 操作系统
作者
Tun Li,Ya Wen Luo,Xin Wan,Qian Li,Qilie Liu,Rong Wang,Chaolong Jia,Yunpeng Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:246: 123109-123109 被引量:8
标识
DOI:10.1016/j.eswa.2023.123109
摘要

The proliferation of malware in recent years has posed a significant threat to the security of computers and mobile devices. Detecting malware, especially on the Android platform, has become a growing concern for researchers and the software industry. This paper proposes a new method for detecting Android malware based on unbalanced heterogeneous graph embedding. First of all, most malware datasets contain an imbalance of malicious and benign samples, since some types of malware are scarce and difficult to collect. Thus, as a result of this problem, the classification algorithm is unable to analyze the minority samples through sufficient data, resulting in poor downstream classifier performance, in light of the fact that adversarial generation networks possess the characteristic of completing data, an algorithm for generating graph structure data is presented, in which nodes are generated to simulate the distribution of minority nodes within a network topology. Then, considering that heterogeneous information networks have the characteristics of retaining rich node semantic features and mining implicit relationships, heterogeneous graphs are used to construct models for different types of entities (i.e. Apps, APIs, permissions, intents, etc.) and different meta-paths. Finally, a new method is introduced to alleviate the over-smoothing phenomenon of node information in the propagation of deep network. In the deep GCN, we first sample the leader nodes of each layer node, and then add a residual connection and an identity map in order to determine the characteristics of the high-order leader. In this paper, a self-attention-based semantic fusion method is also applied to adaptively fuse embedded representations of software nodes under different meta-paths. The test results demonstrate that the proposed IHODroid model effectively detects malicious software. In the DREBIN dataset, which consists of 123,453 Android applications and 5,560 malicious samples, the IHODroid model achieves an accuracy of 0.9360 and an F1 score of 0.9360, outperforming other state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
40秒前
Criminology34应助科研通管家采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
1分钟前
吼吼哈嘿完成签到 ,获得积分10
1分钟前
orixero应助dllneu采纳,获得10
1分钟前
倩倩完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助Cedric采纳,获得10
3分钟前
时间煮雨我煮鱼完成签到,获得积分10
3分钟前
4分钟前
5分钟前
Double发布了新的文献求助10
5分钟前
忧心的从蓉完成签到,获得积分10
6分钟前
6分钟前
pasxc完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Criminology34应助科研通管家采纳,获得20
7分钟前
Criminology34应助科研通管家采纳,获得20
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Ma完成签到,获得积分10
7分钟前
ranj完成签到,获得积分10
7分钟前
7分钟前
laa发布了新的文献求助10
7分钟前
7分钟前
麦旋风发布了新的文献求助10
7分钟前
zjl关闭了zjl文献求助
8分钟前
矢思然完成签到,获得积分10
8分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346581
求助须知:如何正确求助?哪些是违规求助? 4481113
关于积分的说明 13947277
捐赠科研通 4378960
什么是DOI,文献DOI怎么找? 2406134
邀请新用户注册赠送积分活动 1398713
关于科研通互助平台的介绍 1371476