清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A malware detection model based on imbalanced heterogeneous graph embeddings

计算机科学 恶意软件 数据挖掘 分类器(UML) 图形 人工智能 机器学习 Android(操作系统) 理论计算机科学 计算机安全 操作系统
作者
Tun Li,Ya Wen Luo,Xin Wan,Qian Li,Qilie Liu,Rong Wang,Chaolong Jia,Yunpeng Xiao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123109-123109 被引量:8
标识
DOI:10.1016/j.eswa.2023.123109
摘要

The proliferation of malware in recent years has posed a significant threat to the security of computers and mobile devices. Detecting malware, especially on the Android platform, has become a growing concern for researchers and the software industry. This paper proposes a new method for detecting Android malware based on unbalanced heterogeneous graph embedding. First of all, most malware datasets contain an imbalance of malicious and benign samples, since some types of malware are scarce and difficult to collect. Thus, as a result of this problem, the classification algorithm is unable to analyze the minority samples through sufficient data, resulting in poor downstream classifier performance, in light of the fact that adversarial generation networks possess the characteristic of completing data, an algorithm for generating graph structure data is presented, in which nodes are generated to simulate the distribution of minority nodes within a network topology. Then, considering that heterogeneous information networks have the characteristics of retaining rich node semantic features and mining implicit relationships, heterogeneous graphs are used to construct models for different types of entities (i.e. Apps, APIs, permissions, intents, etc.) and different meta-paths. Finally, a new method is introduced to alleviate the over-smoothing phenomenon of node information in the propagation of deep network. In the deep GCN, we first sample the leader nodes of each layer node, and then add a residual connection and an identity map in order to determine the characteristics of the high-order leader. In this paper, a self-attention-based semantic fusion method is also applied to adaptively fuse embedded representations of software nodes under different meta-paths. The test results demonstrate that the proposed IHODroid model effectively detects malicious software. In the DREBIN dataset, which consists of 123,453 Android applications and 5,560 malicious samples, the IHODroid model achieves an accuracy of 0.9360 and an F1 score of 0.9360, outperforming other state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意2023完成签到 ,获得积分10
3秒前
alexlpb完成签到,获得积分0
4秒前
元水云完成签到,获得积分10
7秒前
斯文败类应助科研通管家采纳,获得20
7秒前
风清扬发布了新的文献求助10
18秒前
19秒前
嘟嘟噜发布了新的文献求助10
24秒前
华仔应助嘟嘟噜采纳,获得10
31秒前
yu完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助100
42秒前
Akim应助舒适以松采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
kyle完成签到 ,获得积分10
2分钟前
2分钟前
LioXH完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
LioXH发布了新的文献求助10
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
2分钟前
大水完成签到 ,获得积分10
2分钟前
Ray完成签到 ,获得积分10
2分钟前
舒适以松发布了新的文献求助10
2分钟前
3分钟前
自然代亦完成签到 ,获得积分10
3分钟前
3分钟前
Yjj发布了新的文献求助20
3分钟前
坤坤完成签到 ,获得积分10
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
外向的芒果完成签到 ,获得积分10
3分钟前
3分钟前
Lexi完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
行走完成签到,获得积分10
3分钟前
gwbk完成签到,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015451
求助须知:如何正确求助?哪些是违规求助? 3555379
关于积分的说明 11318024
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012