氢解
双金属片
产品分销
催化作用
化学
材料科学
化学工程
有机化学
工程类
作者
Yong Yuan,Zhenhua Xie,Kevin K. Turaczy,Sooyeon Hwang,Jiahua Zhou,Jingguang G. Chen
摘要
Plastic hydrogenolysis is an attractive approach for producing value-added chemicals due to its mild reaction conditions, but controlling product distribution is challenging due to the formation of undesired CH4. This work reports several bimetallic RuM3/CeO2 (M = Fe, Co, Ni) catalysts that shift the product of low-density polyethylene hydrogenolysis toward longer-chain hydrocarbons. These catalysts were characterized by using X-ray absorption fine structure spectroscopy, electron microscopy imaging, and H2 temperature-programmed reduction. The combined catalytic evaluation and characterization results revealed that the product distribution was regulated by the formation of bimetallic alloys. A model compound, n-hexadecane, was selected to further understand the differences in hydrogenolysis over the Ru-based catalysts. Although a longer reaction time shifted the product toward smaller molecules, the bimetallic (RuCo3/CeO2) catalyst limited the further conversion of C2-C5 into CH4. This work highlights the role of bimetallic alloys in tailoring the interaction with hydrocarbons, thereby controlling the product distribution of polymer hydrogenolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI