A Dual-Functional System for the Classification and Diameter Measurement of Aortic Dissections Using CTA Volumes via Deep Learning

医学 主动脉夹层 放射科 升主动脉 解剖(医学) 计算机断层血管造影 主动脉 血管造影 降主动脉 一致性(知识库) 心脏病学 人工智能 计算机科学
作者
Zhihui Huang,Rui Wang,Hui Yu,Yifan Xu,Cheng Cheng,Guangwei Wang,Haosen Cao,Xiang Wei,Hai‐Tao Zhang
出处
期刊:Engineering [Elsevier]
卷期号:34: 83-91
标识
DOI:10.1016/j.eng.2023.11.014
摘要

Acute aortic dissection is one of the most life-threatening cardiovascular diseases, with a high mortality rate. Its prevalence ranges from 0.2% to 0.8% in humans, resulting in a significant number of deaths due to being missed in manual examinations. More importantly, the aortic diameter—a critical indicator for surgical selection—significantly influences the outcomes of surgeries post-diagnosis. Therefore, it is an urgent yet challenging mission to develop an automatic aortic dissection diagnostic system that can recognize and classify the aortic dissection type and measure the aortic diameter. This paper offers a dual-functional deep learning system called DDAsys that enables both accurate classification of aortic dissection and precise diameter measurement of the aorta. To this end, we created a dataset containing 61 190 computed tomography angiography (CTA) images from 279 patients from the Division of Cardiothoracic and Vascular Surgery at Tongji Hospital, Wuhan, China. The dataset provides a slice-level summary of difficult-to-identify features, which helps to improve the accuracy of both recognition and classification. Our system achieves a recognition F1 score of 0.984, an average classification F1 score 0.937, and the respective measurement precisions for ascending and descending aortic diameters are 0.994 mm and 0.767 mm root mean square error (RMSE). The high consistency (88.6%) between the recommended surgical treatments and the actual corresponding surgeries verifies the capability of our system to aid clinicians in developing a more prompt, precise, and consistent treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
火星上的菲鹰应助mmknnk采纳,获得10
刚刚
生医佳佳完成签到,获得积分10
刚刚
寒冷仇天发布了新的文献求助10
1秒前
hanabi发布了新的文献求助10
1秒前
SciGPT应助蔡蔡采纳,获得10
2秒前
2秒前
2秒前
小yang完成签到,获得积分10
2秒前
3秒前
追寻白亦完成签到,获得积分20
4秒前
4秒前
raquelle完成签到,获得积分10
5秒前
PENG应助危机的含莲采纳,获得10
5秒前
Bruce完成签到,获得积分10
6秒前
7秒前
科研通AI5应助酷酷的笑白采纳,获得10
7秒前
柯飞扬完成签到,获得积分10
7秒前
lalala应助lh采纳,获得10
8秒前
8秒前
科研通AI5应助9℃采纳,获得10
8秒前
虚拟的凡波完成签到,获得积分10
8秒前
10秒前
桐桐应助Maxpan采纳,获得10
10秒前
10秒前
11秒前
青竹发布了新的文献求助10
11秒前
CMUSK发布了新的文献求助10
12秒前
领导范儿应助月亮是甜的采纳,获得10
13秒前
present完成签到,获得积分10
13秒前
13秒前
luck完成签到 ,获得积分10
14秒前
14秒前
飞龙在天发布了新的文献求助10
14秒前
15秒前
大个应助JZ采纳,获得10
15秒前
16秒前
优美语风完成签到,获得积分20
16秒前
CipherSage应助我要发文章采纳,获得10
17秒前
潇潇微雨发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514238
求助须知:如何正确求助?哪些是违规求助? 3096520
关于积分的说明 9232276
捐赠科研通 2791605
什么是DOI,文献DOI怎么找? 1531992
邀请新用户注册赠送积分活动 711720
科研通“疑难数据库(出版商)”最低求助积分说明 706999