Assessing Face Image Quality: A Large-scale Database and a Transformer Method

计算机科学 人工智能 图像质量 面部识别系统 计算机视觉 失真(音乐) 面子(社会学概念) 变压器 模式识别(心理学) 数据库 图像(数学) 工程类 电气工程 社会学 社会科学 电压 放大器 带宽(计算) 计算机网络
作者
Shipeng Li,Shengxi Li,Mai Xu,Yang Li,Xiaofei Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (5): 3981-4000
标识
DOI:10.1109/tpami.2024.3350049
摘要

The amount of face images has been witnessing an explosive increase in the last decade, where various distortions inevitably exist on transmitted or stored face images. The distortions lead to visible and undesirable degradation on face images, affecting their quality of experience (QoE). To address this issue, this paper proposes a novel Transformer-based method for quality assessment on face images (named as TransFQA). Specifically, we first establish a large-scale face image quality assessment (FIQA) database, which includes 42,125 face images with diversifying content at different distortion types. Through an extensive crowdsource study, we obtain 712,808 subjective scores, which to the best of our knowledge contribute to the largest database for assessing the quality of face images. Furthermore, by investigating the established database, we comprehensively analyze the impacts of distortion types and facial components (FCs) on the overall image quality. Accordingly, we propose the TransFQA method, in which the FC-guided Transformer network (FT-Net) is developed to integrate the global context, face region and FC detailed features via a new progressive attention mechanism. Then, a distortion-specific prediction network (DP-Net) is designed to weight different distortions and accurately predict final quality scores. Finally, the experiments comprehensively verify that our TransFQA method significantly outperforms other state-of-the-art methods for quality assessment on face images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CC完成签到,获得积分10
刚刚
1秒前
1秒前
微笑沛文完成签到 ,获得积分20
1秒前
Detoxicate发布了新的文献求助10
1秒前
五公里小战士完成签到,获得积分10
2秒前
2秒前
信号完成签到,获得积分10
4秒前
putongren发布了新的文献求助10
4秒前
4秒前
4秒前
雷鸣发布了新的文献求助10
5秒前
5秒前
852应助大方念云采纳,获得30
5秒前
zz发布了新的文献求助10
6秒前
6秒前
科研小助理完成签到,获得积分10
7秒前
SSL发布了新的文献求助10
7秒前
Zn应助pikahe采纳,获得10
7秒前
FKVB_完成签到 ,获得积分10
8秒前
Detoxicate完成签到,获得积分10
8秒前
小不溜完成签到 ,获得积分10
8秒前
二小发布了新的文献求助10
10秒前
10秒前
Ava应助失眠的筝采纳,获得10
10秒前
orixero应助陳某采纳,获得10
10秒前
韩立发布了新的文献求助10
10秒前
吕吕完成签到,获得积分10
10秒前
11秒前
Wch完成签到,获得积分10
11秒前
殷勤的雨灵完成签到,获得积分10
11秒前
mylian发布了新的文献求助30
12秒前
12秒前
12秒前
13秒前
CQ完成签到,获得积分10
13秒前
13秒前
Wch发布了新的文献求助10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557057
求助须知:如何正确求助?哪些是违规求助? 3132400
关于积分的说明 9396994
捐赠科研通 2832554
什么是DOI,文献DOI怎么找? 1556834
邀请新用户注册赠送积分活动 726953
科研通“疑难数据库(出版商)”最低求助积分说明 716170