A fine digital soil mapping by integrating remote sensing-based process model and deep learning method in Northeast China

过程(计算) 遥感 中国 深度学习 计算机科学 环境科学 人工智能 地理 考古 操作系统
作者
Yilin Bao,Fengmei Yao,Xiangtian Meng,Jingwen Wang,Huanjun Liu,Yihao Wang,Qi Liu,Jiahua Zhang,Abdul M. Mouazen
出处
期刊:Soil & Tillage Research [Elsevier BV]
卷期号:238: 106010-106010 被引量:8
标识
DOI:10.1016/j.still.2024.106010
摘要

Accurate soil type maps provide an important basis for agricultural decision-making and land degradation control. In soil classification studies, the various environmental covariates are often selected based on the soil-forming framework. Since the mapping area and available observation data are limited, meteorological and vegetation cover factors have not been fully developed, and their role in soil classification needs to be evaluated. In addition, whether deep learning has out-performance in soil classification remains to be tested. The aim of this paper is to evaluate the accuracy of deep learning modelling techniques in classifying soil type using different combinations of input variables, and evaluate the importance of soil-forming variables in soil type classification. Therefore, we collected commonly used environmental covariates in Northeast China (NEC), including multiple meteorological factors and adopted a satellite-based biophysical model (Boreal Ecosystem Productivity Simulator, BEPS) to enrich vegetation cover factors. Next, four modeling strategies were developed: the soil-forming factors of soil and relief were considered as traditional environmental covariates (T), as well as combined with meteorologic variables (T + C), vegetation cover variables (T + V) and all available environmental covariates (T + C + V). Then, the effectiveness of different modeling strategies for soil classification was explored with convolutional neural network (CNN) model and multi-layer random forest (MRF) model based on soil separability. Finally, a 30 m resolution soil type map was established. The results demonstrated that both MRF and CNN can achieve high accuracy soil classification, while the CNN model performs better. The descending order of classification accuracy based on different modeling strategies of the CNN model is shown as T + C + V: 91.08%, T + V: 88.84%, T + C: 86.82%, and T: 83.96%. Meanwhile, the separability of different soil-forming factors for soil classification is soil properties, vegetation cover, temporal variation, meteorologic and relief in descending order. For Castanozems and Brown soils, MRF has higher classification accuracy, while CNN has better performance in Meadow soils and Fluvo-aquic soils. The methodology proposed in this paper aims to achieve high accuracy soil classification, provide an approach to understand the importance of soil-forming factors for the region, as well as for different soil types, and provide references for facilitating the interpretation of misclassified areas. Our results are accurate in the core areas, and therefore, this work facilitates researchers to be able to focus more on areas where different soil types intersect, thus significantly improves efficiency and saves resources, and promises to be a useful tool for future soil surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
walthime完成签到,获得积分10
1秒前
Glowing发布了新的文献求助10
1秒前
闯将发布了新的文献求助10
3秒前
sahjdkah发布了新的文献求助10
4秒前
ccyy完成签到,获得积分10
5秒前
jzy发布了新的文献求助30
5秒前
yy发布了新的文献求助10
5秒前
6秒前
6秒前
orixero应助忻樱采纳,获得10
6秒前
JPH1990应助Glowing采纳,获得10
8秒前
9秒前
朴实香露发布了新的文献求助10
11秒前
科研通AI5应助jinjinjin采纳,获得10
11秒前
xt完成签到 ,获得积分10
13秒前
科研通AI5应助Vicky采纳,获得30
16秒前
乔杰发布了新的文献求助10
16秒前
王钰淼完成签到,获得积分10
17秒前
大模型应助lyric采纳,获得10
18秒前
鱼乐乐完成签到,获得积分10
21秒前
贰鸟应助今夕何夕采纳,获得20
22秒前
可爱的函函应助飘逸颖采纳,获得30
22秒前
回忆都是负荷完成签到,获得积分10
24秒前
24秒前
33完成签到 ,获得积分10
24秒前
大碗牛肉面特辣完成签到 ,获得积分10
24秒前
24秒前
27秒前
27秒前
万能图书馆应助认真雅寒采纳,获得10
28秒前
云轩发布了新的文献求助10
28秒前
在水一方应助CJY采纳,获得10
28秒前
29秒前
29秒前
爆米花应助Xu采纳,获得10
29秒前
lyric发布了新的文献求助10
31秒前
springwyc发布了新的文献求助10
31秒前
J11发布了新的文献求助10
33秒前
研友_rLmNXn发布了新的文献求助10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655184
求助须知:如何正确求助?哪些是违规求助? 3218267
关于积分的说明 9723075
捐赠科研通 2926534
什么是DOI,文献DOI怎么找? 1602763
邀请新用户注册赠送积分活动 755805
科研通“疑难数据库(出版商)”最低求助积分说明 733433