Sales pricing models based on returns: Bundling vs. add-on

业务 经济 金融经济学 计量经济学
作者
Tengfei Nie,Bo Song,Jianghua Zhang
出处
期刊:Omega [Elsevier]
卷期号:125: 103038-103038 被引量:4
标识
DOI:10.1016/j.omega.2024.103038
摘要

With the proliferation of e-commerce, there has been a remarkable surge in the volume of products sold online, accompanied by a corresponding increase in product returns. In order to stimulate consumer demand, retailers have adopted various promotional strategies, among which the bundling and add-on sales have emerged as the most prevalent. Nevertheless, there is currently no clearly dominant promotion model considering consumer return behavior. Consequently, we construct a game-theory model that considers product returns in the settings of an online retailer, an insurance company, and a continuum of consumers. Within our model, consumers are confronted with uncertainty regarding their valuations and only ascertain the true value of a purchased product after acquisition. Moreover, retailers must carefully consider the tradeoff between the bundling and add-on models: bundling sales may sell more products, but return products increase; on the other hand, add-on sales offer the advantage of single item returns but may result in a decrease in overall product sales. Our findings yield several noteworthy conclusions warranting further examination. First, add-on product substandard rate (Proportion of add-on products with substandard quality to all add-on products) has a significant influence on the retailer's choice of sales model. More specifically, when the add-on product substandard rate is lower, retailers will definitely choose bundling sales. Otherwise, the retailer's choice of sales model depends on both core product price and degree of discount. Second, in bundling sales, the better the match between core product and add-on product, the higher the retailer's profit. However, in add-on sales, highly matched add-on product may hurt the retailer's profit. Finally, add-on sales is a better choice for commercial groups that have both sales companies and insurance companies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Zhy发布了新的文献求助10
4秒前
852应助黄滔采纳,获得30
4秒前
5秒前
5秒前
曾经冷荷发布了新的文献求助10
5秒前
p53完成签到,获得积分10
5秒前
6秒前
one发布了新的文献求助10
7秒前
答不溜关注了科研通微信公众号
8秒前
CodeCraft应助lvwubin采纳,获得30
8秒前
含蓄妖丽发布了新的文献求助10
9秒前
张嘉佳完成签到 ,获得积分10
13秒前
13秒前
科研南完成签到,获得积分10
16秒前
zzl发布了新的文献求助10
18秒前
18秒前
18秒前
完美世界应助含蓄妖丽采纳,获得10
19秒前
21秒前
一路微笑发布了新的文献求助10
21秒前
yingrui发布了新的文献求助10
22秒前
锦鲤发布了新的文献求助10
22秒前
归尘应助否认冶游史采纳,获得10
24秒前
柯一一应助将将采纳,获得10
24秒前
25秒前
CCC完成签到 ,获得积分10
27秒前
llll应助yingrui采纳,获得10
28秒前
28秒前
小木同学完成签到,获得积分10
28秒前
31秒前
Akim应助舒心的秋荷采纳,获得10
31秒前
32秒前
Rockyhee22发布了新的文献求助10
33秒前
34秒前
丰知然应助懒羊羊采纳,获得10
35秒前
爱听歌契发布了新的文献求助10
36秒前
高贵怀蕾发布了新的文献求助30
36秒前
猪猪hero发布了新的文献求助10
40秒前
43秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416658
求助须知:如何正确求助?哪些是违规求助? 3018516
关于积分的说明 8884356
捐赠科研通 2705781
什么是DOI,文献DOI怎么找? 1483926
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681022