iAMP-Attenpred: a novel antimicrobial peptide predictor based on BERT feature extraction method and CNN-BiLSTM-Attention combination model

计算机科学 人工智能 特征(语言学) 抗菌肽 鉴定(生物学) 领域(数学) 特征提取 机器学习 深度学习 图层(电子) 生物 化学 哲学 有机化学 纯数学 植物 生物化学 语言学 数学
作者
Wenxuan Xing,Jie Zhang,Chen Li,Yujia Huo,Gaifang Dong
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1) 被引量:11
标识
DOI:10.1093/bib/bbad443
摘要

Abstract As a kind of small molecule protein that can fight against various microorganisms in nature, antimicrobial peptides (AMPs) play an indispensable role in maintaining the health of organisms and fortifying defenses against diseases. Nevertheless, experimental approaches for AMP identification still demand substantial allocation of human resources and material inputs. Alternatively, computing approaches can assist researchers effectively and promptly predict AMPs. In this study, we present a novel AMP predictor called iAMP-Attenpred. As far as we know, this is the first work that not only employs the popular BERT model in the field of natural language processing (NLP) for AMPs feature encoding, but also utilizes the idea of combining multiple models to discover AMPs. Firstly, we treat each amino acid from preprocessed AMPs and non-AMP sequences as a word, and then input it into BERT pre-training model for feature extraction. Moreover, the features obtained from BERT method are fed to a composite model composed of one-dimensional CNN, BiLSTM and attention mechanism for better discriminating features. Finally, a flatten layer and various fully connected layers are utilized for the final classification of AMPs. Experimental results reveal that, compared with the existing predictors, our iAMP-Attenpred predictor achieves better performance indicators, such as accuracy, precision and so on. This further demonstrates that using the BERT approach to capture effective feature information of peptide sequences and combining multiple deep learning models are effective and meaningful for predicting AMPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助朴素妙梦采纳,获得10
1秒前
1秒前
烟花应助Voloid采纳,获得20
1秒前
1秒前
晶坚强完成签到,获得积分10
2秒前
ycd完成签到,获得积分20
2秒前
华仔应助lyh采纳,获得10
2秒前
2秒前
Zhy完成签到,获得积分10
2秒前
袁123完成签到,获得积分10
3秒前
茅十八完成签到,获得积分10
3秒前
linhuafeng发布了新的文献求助10
3秒前
无花果应助可恶的文献采纳,获得10
4秒前
几又完成签到,获得积分10
4秒前
天天快乐应助Jaron0080采纳,获得10
4秒前
5秒前
Jiangzhibing发布了新的文献求助20
5秒前
5秒前
学习完成签到,获得积分10
6秒前
ins发布了新的文献求助10
6秒前
风车车完成签到,获得积分10
7秒前
7秒前
7秒前
认真的火发布了新的文献求助10
7秒前
虚心的羿完成签到,获得积分10
8秒前
上好佳完成签到,获得积分10
8秒前
qqqq发布了新的文献求助10
8秒前
科目三应助邹聆岫采纳,获得10
8秒前
燕一刀完成签到 ,获得积分10
8秒前
时笙完成签到 ,获得积分10
9秒前
HHH完成签到,获得积分10
9秒前
学习发布了新的文献求助10
9秒前
Buxi完成签到,获得积分10
11秒前
诱导效应发布了新的文献求助10
11秒前
羌活发布了新的文献求助10
11秒前
研友_8RlQ2n完成签到,获得积分10
12秒前
qqqq完成签到,获得积分10
12秒前
希望天下0贩的0应助果实采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960824
求助须知:如何正确求助?哪些是违规求助? 3507059
关于积分的说明 11133511
捐赠科研通 3239361
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872160
科研通“疑难数据库(出版商)”最低求助积分说明 803149