番茄
光合作用
植物
光抑制
生物
气孔导度
植物生理学
活性氧
鲁比斯科
光呼吸
盐度
化学
生物化学
光系统II
生态学
作者
Zarin Taj,Kavya Bakka,Dinakar Challabathula
标识
DOI:10.1016/j.plaphy.2024.108482
摘要
Photosynthesis is known to be seriously affected by salt stress. The stress induced membrane damage leads to disrupted photosynthetic components causing imbalance between production and utilization of ATP/NADPH with generation of ROS leading to photoinhibition and photodamage. In the current study, role of halotolerant plant growth promoting bacteria (PGPB) Staphylococcus sciuri ET101 in protection of photosynthesis in tomato plants during salinity stress was evaluated by analysing changes in antioxidant defense and activation of redox dissipation pathways. Inoculation of S. sciuri ET101 significantly enhanced the growth of tomato plants with significantly higher photosynthetic rates (PN) under normal and salinity stress conditions. Further, increased membrane stability, soluble sugar accumulation and significant decrease in malondialdehyde (MDA) content in leaves of ET101 inoculated tomato plants under normal and salinity were observed along with increased expression of antioxidant genes for efficient ROS detoxification and suppression of oxidative damage. Additionally, salinity induced decrease in rate of photosynthesis (PN) due to lowered chloroplastic CO2 concentration (Cc) attributed by low mesophyll conductance (gm) in uninoculated plants was alleviated by ET101 inoculation showing significantly higher carboxylation rate (Vcmax), RuBP generation (Jmax) and increased photorespiration (PR). The genes involved in photorespiratory process, cyclic electron flow (CEF), and alternative oxidase (AOX) pathway of mitochondrial respiration were abundantly expressed in leaves of ET101 inoculated plants indicating their involvement in protecting photosynthesis from salt stress induced photoinhibition. Collectively, our results indicated that S. sciuri ET101 has the potential in protecting photosynthesis of tomato plants under salinity stress through activation of redox dissipation pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI