兴奋剂
离子
材料科学
转化(遗传学)
相(物质)
纳米技术
光电子学
化学
基因
有机化学
生物化学
作者
Hui Zhang,Shaocheng Zhang,Baiyu Guo,Li‐Juan Yu,Linlin Ma,Baoxiu Hou,Haiyan Liu,Shuaihua Zhang,Jiangyan Wang,Jianjun Song,Yongfu Tang,Xiaoxian Zhao
标识
DOI:10.1002/ange.202400285
摘要
Abstract Low Na + and electron diffusion kinetics severely restrain the rate capability of MoS 2 as anode for sodium‐ion batteries (SIBs). Slow phase transitions between 2H and 1T, and from Na x MoS 2 to Mo and Na 2 S as well as the volume change during cycling, induce a poor cycling stability. Herein, an original Fe single atom doped MoS 2 hollow multishelled structure (HoMS) is designed for the first time to address the above challenges. The Fe single atom in MoS 2 promotes the electron transfer, companying with shortened charge diffusion path from unique HoMS, thereby achieving excellent rate capability. The strong adsorption with Na + and self‐catalysis of Fe single atom facilitates the reversible conversion between 2H and 1T, and from Na x MoS 2 to Mo and Na 2 S. Moreover, the buffering effect of HoMS on volume change during cycling improves the cyclic stability. Consequently, the Fe single atom doped MoS 2 quadruple‐shelled sphere exhibits a high specific capacity of 213.3 mAh g −1 at an ultrahigh current density of 30 A g −1 , which is superior to previously‐reported results. Even at 5 A g −1 , 259.4 mAh g −1 (83.68 %) was reserved after 500 cycles. Such elaborate catalytic site decorated HoMS is also promising to realize other “fast‐charging” high‐energy‐density rechargeable batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI