3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN

增采样 计算机科学 模态(人机交互) 分辨率(逻辑) 人工智能 一般化 模式识别(心理学) 卷积神经网络 计算机视觉 先验与后验 滤波器(信号处理) 图像(数学) 数学 数学分析 哲学 认识论
作者
Kang Li,Bin Tang,Jianjun Huang,Jianping Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:248: 108110-108110 被引量:37
标识
DOI:10.1016/j.cmpb.2024.108110
摘要

High-resolution (HR) MR images provide rich structural detail to assist physicians in clinical diagnosis and treatment plan. However, it is arduous to acquire HR MRI due to equipment limitations, scanning time or patient comfort. Instead, HR MRI could be obtained through a number of computer assisted post-processing methods that have proven to be effective and reliable. This paper aims to develop a convolutional neural network (CNN) based super-resolution reconstruction framework for low-resolution (LR) T2w images. In this paper, we propose a novel multi-modal HR MRI generation framework based on deep learning techniques. Specifically, we construct a CNN based on multi-resolution analysis to learn an end-to-end mapping between LR T2w and HR T2w, where HR T1w is fed into the network to offer detailed a priori information to help generate HR T2w. Furthermore, a low-frequency filtering module is introduced to filter out the interference from HR-T1w during high-frequency information extraction. Based on the idea of multi-resolution analysis, detailed features extracted from HR T1w and LR T2w are fused at two scales in the network and then HR T2w is reconstructed by upsampling and dense connectivity module. Extensive quantitative and qualitative evaluations demonstrate that the proposed method enhances the recovered HR T2w details and outperforms other state-of-the-art methods. In addition, the experimental results also suggest that our network has a lightweight structure and favorable generalization performance. The results show that the proposed method is capable of reconstructing HR T2w with higher accuracy. Meanwhile, the super-resolution reconstruction results on other dataset illustrate the excellent generalization ability of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
living笑白完成签到,获得积分10
刚刚
hansheng完成签到,获得积分10
1秒前
华仔应助hanxin108采纳,获得10
1秒前
乐乐应助端庄的以寒采纳,获得10
1秒前
helppppp发布了新的文献求助10
2秒前
凤迎雪飘完成签到,获得积分10
2秒前
coffee发布了新的文献求助10
3秒前
Grijze发布了新的文献求助10
3秒前
娜尼啊发布了新的文献求助10
4秒前
默默诗筠完成签到,获得积分10
4秒前
扎扎拉鸡完成签到,获得积分10
4秒前
5秒前
烟花应助hzhang0807采纳,获得10
5秒前
义气的钥匙完成签到,获得积分10
5秒前
思源应助Amorfati采纳,获得10
5秒前
所所应助feifei采纳,获得10
6秒前
小唐完成签到,获得积分10
6秒前
6秒前
wfy发布了新的文献求助10
7秒前
田様应助xtt采纳,获得10
7秒前
7秒前
情怀应助helppppp采纳,获得10
7秒前
8秒前
dtf完成签到,获得积分10
8秒前
QQ完成签到 ,获得积分10
8秒前
六月初八夜完成签到,获得积分10
9秒前
9秒前
上官若男应助云1采纳,获得30
9秒前
miemie66发布了新的文献求助10
9秒前
10秒前
小公牛发布了新的文献求助30
10秒前
11秒前
wang发布了新的文献求助30
11秒前
美好幻梦发布了新的文献求助30
11秒前
12秒前
完美的幻悲完成签到 ,获得积分10
12秒前
Sunnie完成签到,获得积分10
12秒前
疯狂的胡萝卜完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009487
求助须知:如何正确求助?哪些是违规求助? 3549466
关于积分的说明 11302335
捐赠科研通 3284069
什么是DOI,文献DOI怎么找? 1810464
邀请新用户注册赠送积分活动 886301
科研通“疑难数据库(出版商)”最低求助积分说明 811339