亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN

增采样 计算机科学 模态(人机交互) 分辨率(逻辑) 人工智能 一般化 模式识别(心理学) 卷积神经网络 计算机视觉 先验与后验 滤波器(信号处理) 图像(数学) 数学 认识论 数学分析 哲学
作者
Kang Li,Bin Tang,Jianjun Huang,Jianping Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:248: 108110-108110 被引量:63
标识
DOI:10.1016/j.cmpb.2024.108110
摘要

High-resolution (HR) MR images provide rich structural detail to assist physicians in clinical diagnosis and treatment plan. However, it is arduous to acquire HR MRI due to equipment limitations, scanning time or patient comfort. Instead, HR MRI could be obtained through a number of computer assisted post-processing methods that have proven to be effective and reliable. This paper aims to develop a convolutional neural network (CNN) based super-resolution reconstruction framework for low-resolution (LR) T2w images. In this paper, we propose a novel multi-modal HR MRI generation framework based on deep learning techniques. Specifically, we construct a CNN based on multi-resolution analysis to learn an end-to-end mapping between LR T2w and HR T2w, where HR T1w is fed into the network to offer detailed a priori information to help generate HR T2w. Furthermore, a low-frequency filtering module is introduced to filter out the interference from HR-T1w during high-frequency information extraction. Based on the idea of multi-resolution analysis, detailed features extracted from HR T1w and LR T2w are fused at two scales in the network and then HR T2w is reconstructed by upsampling and dense connectivity module. Extensive quantitative and qualitative evaluations demonstrate that the proposed method enhances the recovered HR T2w details and outperforms other state-of-the-art methods. In addition, the experimental results also suggest that our network has a lightweight structure and favorable generalization performance. The results show that the proposed method is capable of reconstructing HR T2w with higher accuracy. Meanwhile, the super-resolution reconstruction results on other dataset illustrate the excellent generalization ability of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
ZH的天方夜谭完成签到,获得积分10
36秒前
40秒前
badabadaba完成签到,获得积分10
46秒前
1分钟前
小宋同学不能怂完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
自觉的雨南完成签到,获得积分20
2分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得40
4分钟前
七小七完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助易槐采纳,获得10
4分钟前
fantasy发布了新的文献求助10
4分钟前
5分钟前
freyaaaaa应助122319采纳,获得50
5分钟前
浮游应助olekravchenko采纳,获得10
5分钟前
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
桐桐应助科研通管家采纳,获得10
6分钟前
Able完成签到,获得积分10
6分钟前
阿里完成签到,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
阿里发布了新的文献求助20
8分钟前
蓝色的纪念完成签到,获得积分10
8分钟前
8分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502936
求助须知:如何正确求助?哪些是违规求助? 4598615
关于积分的说明 14464678
捐赠科研通 4532229
什么是DOI,文献DOI怎么找? 2483868
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439766