3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN

增采样 计算机科学 模态(人机交互) 分辨率(逻辑) 人工智能 一般化 模式识别(心理学) 卷积神经网络 计算机视觉 先验与后验 滤波器(信号处理) 图像(数学) 数学 数学分析 哲学 认识论
作者
Kang Li,Bin Tang,Jianjun Huang,Jianping Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:248: 108110-108110 被引量:63
标识
DOI:10.1016/j.cmpb.2024.108110
摘要

High-resolution (HR) MR images provide rich structural detail to assist physicians in clinical diagnosis and treatment plan. However, it is arduous to acquire HR MRI due to equipment limitations, scanning time or patient comfort. Instead, HR MRI could be obtained through a number of computer assisted post-processing methods that have proven to be effective and reliable. This paper aims to develop a convolutional neural network (CNN) based super-resolution reconstruction framework for low-resolution (LR) T2w images. In this paper, we propose a novel multi-modal HR MRI generation framework based on deep learning techniques. Specifically, we construct a CNN based on multi-resolution analysis to learn an end-to-end mapping between LR T2w and HR T2w, where HR T1w is fed into the network to offer detailed a priori information to help generate HR T2w. Furthermore, a low-frequency filtering module is introduced to filter out the interference from HR-T1w during high-frequency information extraction. Based on the idea of multi-resolution analysis, detailed features extracted from HR T1w and LR T2w are fused at two scales in the network and then HR T2w is reconstructed by upsampling and dense connectivity module. Extensive quantitative and qualitative evaluations demonstrate that the proposed method enhances the recovered HR T2w details and outperforms other state-of-the-art methods. In addition, the experimental results also suggest that our network has a lightweight structure and favorable generalization performance. The results show that the proposed method is capable of reconstructing HR T2w with higher accuracy. Meanwhile, the super-resolution reconstruction results on other dataset illustrate the excellent generalization ability of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研韭菜发布了新的文献求助10
刚刚
1秒前
Suki发布了新的文献求助10
1秒前
1秒前
mirror应助xiang采纳,获得10
1秒前
深年完成签到,获得积分10
2秒前
慕青应助浮云采纳,获得10
4秒前
Everglow完成签到,获得积分10
4秒前
4秒前
6666应助djbj2022采纳,获得10
5秒前
山下梅子酒完成签到 ,获得积分10
6秒前
6秒前
Ava应助木子李采纳,获得10
6秒前
6秒前
6666应助ichia采纳,获得10
7秒前
科研通AI2S应助无语的代真采纳,获得10
7秒前
7秒前
8秒前
9秒前
嗯呐发布了新的文献求助10
11秒前
kk完成签到 ,获得积分10
11秒前
11秒前
善莫大焉发布了新的文献求助10
11秒前
小怪完成签到,获得积分10
11秒前
like发布了新的文献求助10
12秒前
秦风发布了新的文献求助10
13秒前
无奈的醉薇完成签到,获得积分10
14秒前
14秒前
邢江利发布了新的文献求助10
15秒前
Ava应助尤小玉采纳,获得10
15秒前
15秒前
15秒前
叶帆完成签到,获得积分20
15秒前
16秒前
16秒前
尘曦完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
文艺的青旋完成签到 ,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811