亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN

增采样 计算机科学 模态(人机交互) 分辨率(逻辑) 人工智能 一般化 模式识别(心理学) 卷积神经网络 计算机视觉 先验与后验 滤波器(信号处理) 图像(数学) 数学 数学分析 哲学 认识论
作者
Kang Li,Bin Tang,Jianjun Huang,Jianping Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:248: 108110-108110 被引量:37
标识
DOI:10.1016/j.cmpb.2024.108110
摘要

High-resolution (HR) MR images provide rich structural detail to assist physicians in clinical diagnosis and treatment plan. However, it is arduous to acquire HR MRI due to equipment limitations, scanning time or patient comfort. Instead, HR MRI could be obtained through a number of computer assisted post-processing methods that have proven to be effective and reliable. This paper aims to develop a convolutional neural network (CNN) based super-resolution reconstruction framework for low-resolution (LR) T2w images. In this paper, we propose a novel multi-modal HR MRI generation framework based on deep learning techniques. Specifically, we construct a CNN based on multi-resolution analysis to learn an end-to-end mapping between LR T2w and HR T2w, where HR T1w is fed into the network to offer detailed a priori information to help generate HR T2w. Furthermore, a low-frequency filtering module is introduced to filter out the interference from HR-T1w during high-frequency information extraction. Based on the idea of multi-resolution analysis, detailed features extracted from HR T1w and LR T2w are fused at two scales in the network and then HR T2w is reconstructed by upsampling and dense connectivity module. Extensive quantitative and qualitative evaluations demonstrate that the proposed method enhances the recovered HR T2w details and outperforms other state-of-the-art methods. In addition, the experimental results also suggest that our network has a lightweight structure and favorable generalization performance. The results show that the proposed method is capable of reconstructing HR T2w with higher accuracy. Meanwhile, the super-resolution reconstruction results on other dataset illustrate the excellent generalization ability of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞飞烟完成签到,获得积分10
6秒前
12秒前
HCCha完成签到,获得积分10
16秒前
田様应助run采纳,获得10
29秒前
konosuba完成签到,获得积分0
35秒前
36秒前
认真的幻姬完成签到,获得积分10
44秒前
58秒前
1分钟前
高兴电脑完成签到,获得积分10
1分钟前
1分钟前
沉默白猫完成签到 ,获得积分10
1分钟前
1分钟前
yss发布了新的文献求助10
1分钟前
追寻的纸鹤完成签到 ,获得积分10
1分钟前
run发布了新的文献求助10
1分钟前
1分钟前
鹅糖完成签到,获得积分10
1分钟前
高兴电脑发布了新的文献求助10
1分钟前
背后晓兰完成签到,获得积分20
1分钟前
1分钟前
打打应助奋斗的招牌采纳,获得10
1分钟前
徐进完成签到,获得积分10
1分钟前
1分钟前
1分钟前
激动的晓筠完成签到 ,获得积分10
1分钟前
林祥胜完成签到 ,获得积分10
1分钟前
简单山水发布了新的文献求助10
1分钟前
文艺的枫叶完成签到 ,获得积分10
1分钟前
可爱的函函应助简单山水采纳,获得10
1分钟前
QYQ完成签到 ,获得积分10
1分钟前
陈子阳yyds完成签到,获得积分10
1分钟前
2分钟前
2分钟前
haohao发布了新的文献求助10
2分钟前
爆米花应助Thorns采纳,获得10
2分钟前
科研通AI6应助yss采纳,获得10
2分钟前
2分钟前
鹅糖发布了新的文献求助10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126738
求助须知:如何正确求助?哪些是违规求助? 4330093
关于积分的说明 13492787
捐赠科研通 4165406
什么是DOI,文献DOI怎么找? 2283359
邀请新用户注册赠送积分活动 1284370
关于科研通互助平台的介绍 1224099