3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN

增采样 计算机科学 模态(人机交互) 分辨率(逻辑) 人工智能 一般化 模式识别(心理学) 卷积神经网络 计算机视觉 先验与后验 滤波器(信号处理) 图像(数学) 数学 数学分析 哲学 认识论
作者
Kang Li,Bin Tang,Jianjun Huang,Jianping Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:248: 108110-108110 被引量:63
标识
DOI:10.1016/j.cmpb.2024.108110
摘要

High-resolution (HR) MR images provide rich structural detail to assist physicians in clinical diagnosis and treatment plan. However, it is arduous to acquire HR MRI due to equipment limitations, scanning time or patient comfort. Instead, HR MRI could be obtained through a number of computer assisted post-processing methods that have proven to be effective and reliable. This paper aims to develop a convolutional neural network (CNN) based super-resolution reconstruction framework for low-resolution (LR) T2w images. In this paper, we propose a novel multi-modal HR MRI generation framework based on deep learning techniques. Specifically, we construct a CNN based on multi-resolution analysis to learn an end-to-end mapping between LR T2w and HR T2w, where HR T1w is fed into the network to offer detailed a priori information to help generate HR T2w. Furthermore, a low-frequency filtering module is introduced to filter out the interference from HR-T1w during high-frequency information extraction. Based on the idea of multi-resolution analysis, detailed features extracted from HR T1w and LR T2w are fused at two scales in the network and then HR T2w is reconstructed by upsampling and dense connectivity module. Extensive quantitative and qualitative evaluations demonstrate that the proposed method enhances the recovered HR T2w details and outperforms other state-of-the-art methods. In addition, the experimental results also suggest that our network has a lightweight structure and favorable generalization performance. The results show that the proposed method is capable of reconstructing HR T2w with higher accuracy. Meanwhile, the super-resolution reconstruction results on other dataset illustrate the excellent generalization ability of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Guo99完成签到,获得积分10
1秒前
在水一方应助元谷雪采纳,获得10
2秒前
2秒前
昭昭找不到完成签到,获得积分10
3秒前
3秒前
清脆剑封完成签到,获得积分10
4秒前
4秒前
小米粥发布了新的文献求助10
4秒前
5秒前
6秒前
bsnc完成签到,获得积分10
6秒前
安妮发布了新的文献求助10
6秒前
外向冰绿完成签到,获得积分10
7秒前
传奇3应助高高采纳,获得10
7秒前
风清扬发布了新的文献求助10
7秒前
郝誉发布了新的文献求助10
7秒前
Jasper应助欣喜易形采纳,获得10
8秒前
Uranus发布了新的文献求助10
9秒前
ALDRC完成签到,获得积分10
9秒前
10秒前
或许度发布了新的文献求助10
10秒前
SciGPT应助Xl采纳,获得10
11秒前
wanci应助明理的帆布鞋采纳,获得10
13秒前
科研通AI6应助fzzf采纳,获得10
13秒前
小二郎应助北克采纳,获得10
13秒前
顾矜应助感动的小懒虫采纳,获得10
13秒前
小火花完成签到,获得积分10
14秒前
15秒前
JM关闭了JM文献求助
16秒前
烟花应助微光熠采纳,获得10
16秒前
18秒前
糊涂的汽车完成签到,获得积分10
18秒前
18秒前
愉快的花卷完成签到,获得积分10
18秒前
masro完成签到,获得积分10
19秒前
19秒前
20秒前
草帽发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277