3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN

增采样 计算机科学 模态(人机交互) 分辨率(逻辑) 人工智能 一般化 模式识别(心理学) 卷积神经网络 计算机视觉 先验与后验 滤波器(信号处理) 图像(数学) 数学 认识论 数学分析 哲学
作者
Kang Li,Bin Tang,Jianjun Huang,Jianping Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:248: 108110-108110 被引量:16
标识
DOI:10.1016/j.cmpb.2024.108110
摘要

High-resolution (HR) MR images provide rich structural detail to assist physicians in clinical diagnosis and treatment plan. However, it is arduous to acquire HR MRI due to equipment limitations, scanning time or patient comfort. Instead, HR MRI could be obtained through a number of computer assisted post-processing methods that have proven to be effective and reliable. This paper aims to develop a convolutional neural network (CNN) based super-resolution reconstruction framework for low-resolution (LR) T2w images. In this paper, we propose a novel multi-modal HR MRI generation framework based on deep learning techniques. Specifically, we construct a CNN based on multi-resolution analysis to learn an end-to-end mapping between LR T2w and HR T2w, where HR T1w is fed into the network to offer detailed a priori information to help generate HR T2w. Furthermore, a low-frequency filtering module is introduced to filter out the interference from HR-T1w during high-frequency information extraction. Based on the idea of multi-resolution analysis, detailed features extracted from HR T1w and LR T2w are fused at two scales in the network and then HR T2w is reconstructed by upsampling and dense connectivity module. Extensive quantitative and qualitative evaluations demonstrate that the proposed method enhances the recovered HR T2w details and outperforms other state-of-the-art methods. In addition, the experimental results also suggest that our network has a lightweight structure and favorable generalization performance. The results show that the proposed method is capable of reconstructing HR T2w with higher accuracy. Meanwhile, the super-resolution reconstruction results on other dataset illustrate the excellent generalization ability of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shimmery完成签到,获得积分10
1秒前
咔咔完成签到 ,获得积分20
1秒前
superworm1发布了新的文献求助10
1秒前
1秒前
hy发布了新的文献求助10
1秒前
舒心赛凤完成签到,获得积分10
1秒前
菠菜菜str完成签到,获得积分10
3秒前
悟空发布了新的文献求助10
3秒前
优雅山柏发布了新的文献求助10
3秒前
3秒前
junc发布了新的文献求助20
3秒前
memory发布了新的文献求助10
3秒前
罗曼长情雪兰完成签到,获得积分10
4秒前
酷炫板凳发布了新的文献求助10
4秒前
Sue发布了新的文献求助10
4秒前
5秒前
张先森完成签到,获得积分10
5秒前
Orange应助饭小心采纳,获得10
5秒前
jason完成签到,获得积分10
5秒前
5秒前
5秒前
糖糖完成签到,获得积分10
6秒前
小二郎应助幸福胡萝卜采纳,获得10
6秒前
6秒前
亵渎完成签到,获得积分10
6秒前
mc1220完成签到,获得积分10
7秒前
7秒前
冰刀完成签到,获得积分10
8秒前
kid1412完成签到 ,获得积分10
9秒前
LU完成签到,获得积分10
9秒前
小蘑菇应助R先生采纳,获得50
9秒前
9秒前
小嘎完成签到 ,获得积分10
10秒前
10秒前
10秒前
小虎发布了新的文献求助30
10秒前
11秒前
superworm1完成签到,获得积分10
11秒前
不懂事的小孩完成签到,获得积分10
11秒前
张瑶完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762