BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models

列线图 单变量 医学 逻辑回归 肿瘤科 内科学 比例危险模型 支持向量机 接收机工作特性 胶质瘤 多元统计 人工智能 机器学习 计算机科学 癌症研究
作者
Chenggang Jiang,Chen Sun,Xi Wang,Shunchang Ma,Wang Jia,Dainan Zhang
标识
DOI:10.1007/s10278-024-01026-9
摘要

We aimed to study whether the Bruton's tyrosine kinase (BTK) expression is correlated with the prognosis of patients with high-grade gliomas (HGGs) and predict its expression level prior to surgery, by constructing radiomic models. Clinical and gene expression data of 310 patients from The Cancer Genome Atlas (TCGA) were included for gene-based prognostic analysis. Among them, contrast-enhanced T1-weighted imaging (T1WI + C) from The Cancer Imaging Archive (TCIA) with genomic data was selected from 82 patients for radiomic models, including support vector machine (SVM) and logistic regression (LR) models. Furthermore, the nomogram incorporating radiomic signatures was constructed to evaluate its clinical efficacy. BTK was identified as an independent risk factor for HGGs through univariate and multivariate Cox regression analyses. Three radiomic features were selected to construct the SVM and LR models, and the validation set showed area under curve (AUCs) values of 0.711 (95% CI, 0.598–0.824) and 0.736 (95% CI, 0.627–0.844), respectively. The median survival times of the high Rad_score and low-Rad_score groups based on LR model were 15.53 and 23.03 months, respectively. In addition, the total risk score of each patient was used to construct a predictive nomogram, and the AUCs calculated from the corresponding time-dependent ROC curves were 0.533, 0.659, and 0.767 for 1, 3, and 5 years, respectively. BTK is an independent risk factor associated with poor prognosis in patients, and the radiomic model constructed in this study can effectively and non-invasively predict preoperative BTK expression levels and patient prognosis based on T1WI + C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yinghan1212完成签到,获得积分10
刚刚
刚刚
景清发布了新的文献求助10
1秒前
1秒前
淡然妙松完成签到,获得积分10
1秒前
2秒前
清爽含灵发布了新的文献求助10
2秒前
一亩蔬菜发布了新的文献求助10
2秒前
永远永远完成签到,获得积分10
4秒前
以一关注了科研通微信公众号
5秒前
王老吉发布了新的文献求助10
6秒前
6秒前
万能图书馆应助不动脑筋采纳,获得10
7秒前
8秒前
淡然妙松发布了新的文献求助10
10秒前
文武完成签到,获得积分10
10秒前
10秒前
彭于晏应助XUXU采纳,获得10
11秒前
12秒前
YO发布了新的文献求助10
12秒前
13秒前
lyn完成签到,获得积分10
14秒前
14秒前
supershiyi11发布了新的文献求助10
16秒前
17秒前
小尾巴发布了新的文献求助10
18秒前
18秒前
20秒前
潇洒的宛菡完成签到,获得积分10
20秒前
领导范儿应助英俊绝义采纳,获得10
20秒前
21秒前
wer完成签到 ,获得积分10
21秒前
21秒前
21秒前
Hbobo发布了新的文献求助10
22秒前
EvilS完成签到,获得积分10
22秒前
鸣笛应助一一采纳,获得30
22秒前
本尼脸上褶子完成签到 ,获得积分10
23秒前
上官若男应助顺顺顺采纳,获得10
23秒前
上官若男应助wbing采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545