分类学(生物学)
计算机科学
人工智能
机器学习
数据科学
生物
生态学
作者
Jianghong Zhou,Jiahong Yang,Qian Qi,Yi Qin
标识
DOI:10.1088/1361-6501/ad2bcc
摘要
Abstract Predictive maintenance (PdM) is currently the most cost-effective maintenance method for industrial equipment, offering improved safety and availability of mechanical assets. A crucial component of PdM is the remaining useful life (RUL) prediction for machines, which has garnered increasing attention. With the rapid advancements in industrial Internet of Things (IoT) and artificial intelligence (AI) technologies, RUL prediction methods, particularly those based on pattern recognition (PR) technology, have made significant progress. However, a comprehensive review that systematically analyzes and summarizes these state-of-the-art PR-based prognostic methods is currently lacking. To address this gap, this paper presents a comprehensive review of PR-based RUL prediction methods. Firstly, it summarizes commonly used evaluation indicators based on accuracy metrics, prediction confidence metrics, and prediction stability metrics. Secondly, it provides a comprehensive analysis of typical machine learning methods and deep learning networks employed in RUL prediction. Furthermore, it delves into cutting-edge techniques, including advanced network models and frontier learning theories in RUL prediction. Finally, the paper concludes by discussing the current main challenges and prospects in the field. The intended audience of this article includes practitioners and researchers involved in machinery PdM, aiming to provide them with essential foundational knowledge and a technical overview of the subject matter.
科研通智能强力驱动
Strongly Powered by AbleSci AI