大马士革玫瑰
栽培
香茅醇
化学
香叶醇
类黄酮
园艺
植物
花瓣
精油
食品科学
生物
生物化学
抗氧化剂
作者
Safoora Behnamnia,Mehdi Rahimmalek,Maryam Haghighi,Ali Nikbakht,Shima Gharibi,Natalia Pachura,Antoni Szumny,Jacek Łyczko
出处
期刊:Foods
[MDPI AG]
日期:2024-02-22
卷期号:13 (5): 668-668
被引量:2
标识
DOI:10.3390/foods13050668
摘要
Damask rose (Rosa damascena Mill.) is an aromatic industrial plant with different applications. Selection of cultivars with high-value metabolites such as flavonoids—with acceptable yields—can lead to elite cultivars for mass propagation in various industries. A field experiment was carried out in a randomized complete block design (RCBD) to evaluate metabolites and some yield-related morphological data. In the present investigation, for the first time 13 flavonoid components of nine Iranian damask rose cultivars were compared using LC-MS/MS. As a result, 13 flavonoids were identified, most of which were reported for the first time in rose petals. Phloridzin (72.59–375.92 mg/100 g dw), diosmetin (82.48–153.16 mg/100 g dw) and biochanin A (0–1066.89 mg/100 g dw) were the most abundant, followed by trans-chalcone (0–106.29 mg/100 g dw) and diosmin (41.55–84.57 mg/100 g dw). Levels of naringenin also ranged from 3.77 in B111 to 54.70 mg/100 g dw in C294, while luteolin varied from 4.37 in B111 to 28.87 mg/100 g dw in C294. The SPME Arrow technique also was applied to determine the real aroma of the studied cultivars. Phenethyl alcohol was the most abundant compound, in the range of 69.28 to 77.58%. The highest citronellol/geraniol (C/G) was observed in D234 (4.52%) and D237 (4.30%), while the lowest amount belonged to A104 (1.28%). Rose oxide, as the most crucial factor for odor, ranged from 0.06% in D237 to 0.15% in D211. Based on cluster and principal component analysis (PCA), D234 cultivar can be suggested as a promising cultivar with high yield, high C/G content and high rose oxide, while D234 and C294 were the most valuable cultivars in terms of flavonoids with high yield. Finally, these cultivars can be introduced for further breeding programs and industrial cultivation.
科研通智能强力驱动
Strongly Powered by AbleSci AI