Imitation learning from imperfect demonstrations for AUV path tracking and obstacle avoidance

计算机科学 强化学习 人工智能 障碍物 对抗制 模仿 避障 生成语法 控制(管理) 机器学习 水下 移动机器人 机器人 社会心理学 心理学 海洋学 政治学 法学 地质学
作者
Tianhao Chen,Z.S. Zhang,Zheng Fang,Dong Jiang,Guangliang Li
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:298: 117287-117287 被引量:3
标识
DOI:10.1016/j.oceaneng.2024.117287
摘要

Autonomous underwater vehicle (AUV) is widely used for complex underwater tasks such as seafloor exploration. In recent years, deep reinforcement learning (DRL) has been introduced to the AUV control due to its capability to improve the autonomy of AUV. However, it is usually very difficult to design an effective reward function for the DRL methods. Generative adversarial imitation learning (GAIL) can allow AUVs to learn control policies from expert demonstrations instead of pre-defined reward functions, but suffers from the deficiency of requiring optimal expert demonstrations and not surpassing the provided demonstrations. This paper builds upon the GAIL algorithm for AUV learning control policies from expert demonstrations. We proposed an importance reweighting generative adversarial imitation learning (WGAIL) algorithm by using confidence scores to indicate the optimality of the demonstrated trajectories, which can facilitate AUVs to learn control policies from expert demonstrations of different levels. Our experimental results on a simulated AUV system modeling Sailfish 210 of our lab in the Gazebo simulation environment show that an AUV trained via WGAIL can achieve a better performance than the one trained via GAIL with different levels of expert sub-optimal demonstrations. Moreover, control policies trained via WGAIL in simple tasks can generalize better to complex tasks than those trained via GAIL, greatly extending the applicability of the AUV learning from expert demonstrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助yangzai采纳,获得10
刚刚
刚刚
六点一横发布了新的文献求助10
1秒前
漂亮的毛巾完成签到,获得积分10
1秒前
鱼仔发布了新的文献求助10
2秒前
3秒前
kirito7发布了新的文献求助10
4秒前
AuF完成签到,获得积分10
5秒前
CodeCraft应助duuuuuu采纳,获得10
6秒前
7秒前
六点一横完成签到,获得积分10
7秒前
9秒前
昵称应助Brigitte采纳,获得10
9秒前
十一发布了新的文献求助10
9秒前
rocket发布了新的文献求助10
9秒前
Panini发布了新的文献求助10
9秒前
传奇3应助鲁梦阳采纳,获得30
9秒前
华仔应助与你采纳,获得10
10秒前
YSY发布了新的文献求助10
11秒前
tly发布了新的文献求助10
11秒前
JiangWen完成签到,获得积分10
11秒前
11秒前
11秒前
冷酷芝发布了新的文献求助10
12秒前
jonyyqn发布了新的文献求助10
12秒前
武广敏完成签到,获得积分10
12秒前
yizhi猫发布了新的文献求助10
15秒前
情怀应助韩医生采纳,获得10
16秒前
16秒前
17秒前
17秒前
诸岩发布了新的文献求助10
18秒前
18秒前
JamesPei应助Kurt采纳,获得10
18秒前
19秒前
请先说你好完成签到,获得积分20
20秒前
白色风车完成签到,获得积分20
20秒前
tly发布了新的文献求助10
20秒前
AO发布了新的文献求助10
20秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961103
求助须知:如何正确求助?哪些是违规求助? 3507388
关于积分的说明 11135834
捐赠科研通 3239867
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803152